Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a, xét tam giác AEC và tam giác ADB có : AB = AC do tam giác ABC cân tại A (gt)
góc AEC = góc ADB= 90 do ...
góc A chung
=> tam giác AEC = tam giác ADB (ch - gn)
a.
Xét \(\Delta AEC\) và \(\Delta ADB\) có:AB=AC(cạnh tam giác cân);\(\widehat{AEC}=\widehat{ADB}=90^0\);\(\widehat{A}\) chung
\(\Rightarrow\Delta AEC=\Delta ADB\left(c.g.c\right)\)
b.
Do trung tuyến CD và BM cắt nhau tại I nên I là trọng tâm.
\(\Rightarrow CI=\frac{2}{3}CD\)
Áp dụng định lý py-ta-go vào tam giác vuông BDC ta có:
\(BC^2=BD^2+DC^2\)
\(\Rightarrow CD^2=BC^2-BD^2\)
\(\Rightarrow CD^2=100-64\)
\(\Rightarrow CD=6\) vì \(CD>0\)
\(\Rightarrow CI=\frac{2}{3}\cdot6=4\)
c
Xét \(\Delta BEC\) và \(\Delta BDC\) có:\(\widehat{BEC}=\widehat{BDC}=90^0\);BC chung;\(\widehat{EBC}=\widehat{DCB}\)
\(\Rightarrow\Delta BEC=\Delta BDC\left(c.g.c\right)\Rightarrow BE=DC\Rightarrow AE=AD\)
Xét \(\Delta HAE\) và \(\Delta HAD\) có:\(\widehat{AEH}=\widehat{ADH}=90^0;AH\)chung;\(AE=AD\)
\(\Rightarrow\Delta HAE=\Delta HAD\left(c.g.c\right)\Rightarrow AH\) là đường phân giác.
Mặt khác tam giác ABC cân nên AH đồng thời là đường cao (nếu bạn chưa học cái này thì có thể CM vuông góc bằng cách tạo giao điểm giữa AH và BC)
![](https://rs.olm.vn/images/avt/0.png?1311)
Diễn giải:
- Khi cộng, trừ số thập phân ta tiến hành cộng hoặc trừ các phần tương ứng của các số đó.
Ví dụ 1:
Tính 0,25 + 2,5 ta làm như sau: 5 + 0 = 5 , 2 + 5 =7, 0 + 2 = 2. Vậy 0,25 + 2,5 = 2.75
Tính 8,6 - 2,7 ta làm như sau: 6 - 7 không trừ được ta lấy 16 - 7 = 9, tiếp tục 8 - 2 trừ thêm 1 nữa tức là 8 -3 = 5. Vậy 8,6 - 2,7 = 5,9
- Với phép nhân, chia các số thập phân ta cần viết chúng dưới dạng phân số.
![](https://rs.olm.vn/images/avt/0.png?1311)
a: BD+BC=DC
BC+CE=BE
mà BD=CE
nên DC=BE
Xét ΔABE và ΔACD có
AE=AD
\(\widehat{E}=\widehat{D}\)
BE=CD
Do đó: ΔABE=ΔACD
=>\(\widehat{ABC}=\widehat{ACB}\)
=>AB=AC
b: Xét ΔABD và ΔACE có
AB=AC
BD=CE
AD=AE
Do đó: ΔABD=ΔACE
=>\(\widehat{BAD}=\widehat{CAE}\)
Xét ΔAMB vuông tại M và ΔANC vuông tại N có
AB=AC
\(\widehat{BAM}=\widehat{CAN}\)
Do đó: ΔAMB=ΔANC
=>BM=CN
c: Xét ΔMBD vuông tại M và ΔNCE vuông tại N có
BD=CE
MB=NC
Do đó: ΔMBD=ΔNCE
=>\(\widehat{MBD}=\widehat{NCE}\)
mà \(\widehat{IBC}=\widehat{MBD}\)(hai góc đối đỉnh)
và \(\widehat{NCE}=\widehat{ICB}\)(hai góc đối đỉnh)
nên \(\widehat{ICB}=\widehat{IBC}\)
=>IB=IC
Xét ΔABI và ΔACI có
AB=AC
IB=IC
AI chung
Do đó: ΔABI=ΔACI
=>\(\widehat{BAI}=\widehat{CAI}\)
=>AI là phân giác của góc BAC
![](https://rs.olm.vn/images/avt/0.png?1311)
a)Xét tam giác ABD và tam giác ACE,ta có:
A là góc chung
AB=AC(ví tam giác ABC cân tại A)
AE=AD(gt)
=> tam giác ABD=tam giác ACE(c.g.c)=>BD=CE( 2 cạnh tương ứng)
b)Vì BD,CE lần lượt là đường trung tuyến mà lại giao nhau tại G(mà BD=CE)=>GE=GD=1/3 BD=1/3 CE
=>EG=GD
Xét tam giác AEG và tam giác ADG ,ta có:
GE=GD(c/m trên)
AE=AD(gt)
AG cạnh chung
=>tam giác AEG=tam giác ADG(c.c.c)
=>góc EAG=góc DAG=>AG là tia p/g góc A
c)Ta có: Vì K là trung điểm AG;I là trung điểm GC và AD=DC
=>AI;CK:GD lần lượt là đường trung tuyến tam giác AGC=>BD;CK;AI đồng quy(t/c 3 đường trung tuyến của tam giác)