\(\frac{y}{x}.\sqrt{\frac{x^2}{y^2}}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2016

\(\frac{y}{x}.\sqrt{\frac{x^2}{y^2}}=\frac{y}{x}.\sqrt{\left(\frac{x}{y}\right)^2}=\frac{y}{x}.\frac{x}{y}=1\)

Chúc bạn học tốt :)

16 tháng 7 2016

\(5xy.\sqrt{\frac{25x^2}{y^6}}=5xy.\sqrt{\frac{5^2x^2}{\left(y^3\right)^2}}=5xy.\sqrt{\frac{\left(5x\right)^2}{\left(y^3\right)^2}}5xy.\sqrt{\left(\frac{5x}{y^3}\right)^2}=5xy.\frac{5x}{y^3}=\frac{5^2x^2}{y^2}=\frac{\left(5x\right)^2}{y^2}=\left(\frac{5x}{y}\right)^2\)

Chúc bạn học tốt

16 tháng 7 2016

5xy.\(\sqrt{\frac{25x^2}{y^6}}\)

=5xy.\(\frac{\left|5x\right|}{\left|y^3\right|}\){x<0 nên |5x|=-5x

=\(\orbr{\begin{cases}5xy.\frac{-5x}{y^3}\\5xy.\frac{-5x}{-y^3}\end{cases}}\)

=\(\orbr{\begin{cases}\frac{-25x^2}{y^3}\\\frac{25x^2}{y^3}\end{cases}}\)

11 tháng 10 2020

a) \(\frac{1}{\sqrt{x}-1}+\frac{1}{1+\sqrt{x}}=\frac{1+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(1+\sqrt{x}\right)}+\frac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(1+\sqrt{x}\right)}=\frac{2\sqrt{x}}{x-1}\)( x > 0 ; x ≠ 1 )

b) \(\frac{1}{\sqrt{x}+2}-\frac{2}{\sqrt{x}-2}-\frac{\sqrt{x}}{4-x}=\frac{1}{\sqrt{x}+2}-\frac{2}{\sqrt{x}-2}+\frac{\sqrt{x}}{x-4}\)

\(=\frac{\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\frac{2\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{\sqrt{x}-2-2\sqrt{x}-4+\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{-6}{x-4}\)( x > 0 ; x ≠ 4 )

11 tháng 10 2020

a) Với \(x>0\)và \(x\ne1\)ta có:

\(\frac{1}{\sqrt{x}-1}+\frac{1}{1+\sqrt{x}}+1\)

\(=\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{\sqrt{x}+1+\sqrt{x}-1+x-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{x+2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

b) Với \(x>0\)và \(x\ne4\)ta có: 

\(\frac{1}{\sqrt{x}+2}-\frac{2}{\sqrt{x}-2}-\frac{\sqrt{x}}{4-x}=\frac{1}{\sqrt{x}+2}-\frac{2}{\sqrt{x}-2}-\frac{\sqrt{x}}{x-4}\)

\(=\frac{\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\frac{2\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{\left(\sqrt{x}-2\right)-2\left(\sqrt{x}+2\right)+\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{\sqrt{x}-2-2\sqrt{x}-4+\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{-6}{x-4}\)

27 tháng 6 2017

a) \(\frac{\sqrt{2x^3}}{\sqrt{8x}}=\sqrt{\frac{2x^3}{8x}}=\frac{1}{2}x\)

b) \(\left(3-\sqrt{5}\right)\left(x+\sqrt{5}\right)=3^2-\left(\sqrt{5}\right)^2=9-5=4\)

c) \(\sqrt{\frac{3x^2y^4}{27}}=0\)

\(y\ne0\)

Thì \(\sqrt{\frac{3x^2y^4}{27}}=\frac{1}{3}xy^2\)

e) \(\frac{y}{x^2}\sqrt{\frac{36x^4}{y^2}}=\frac{y}{x^2}.\frac{6x^2}{\left|y\right|}=\frac{6y}{\left|y\right|}\)

Vì y < 0 nên \(\left|y\right|=-y\)

Vậy \(\frac{6y}{\left|y\right|}=\frac{6y}{-y}=-6\)

f) \(\frac{\sqrt{99999999}}{\sqrt{11111111}}=\sqrt{\frac{99999999}{11111111}}=\sqrt{9}=3\)

30 tháng 7 2018

\(C=\sqrt{\frac{x-2\sqrt{xy}+y}{x+6\sqrt{xy}+y}}\)

\(C=\sqrt{\frac{\left(\sqrt{x}\right)^2-2.\sqrt{x}.\sqrt{y}+\left(\sqrt{y}\right)^2}{\left(\sqrt{x}\right)^2+2\sqrt{x}\sqrt{y}+\left(\sqrt{y}\right)^2+4\sqrt{xy}}}\)

\(C=\sqrt{\frac{\left(\sqrt{x}-\sqrt{y}\right)^2}{\left(\sqrt{x}+\sqrt{y}\right)^2+4xy}}\)

29 tháng 5 2017

\(5xy\sqrt{\frac{x^2}{y^6}}=5\sqrt{\frac{x^4y^2}{y^6}}=5\sqrt{\frac{x^4}{y^4}}=5\left|\frac{x^2}{y^2}\right|=-5\)

29 tháng 5 2017

\(5xy\sqrt{\frac{x^2}{y^6}}=5\sqrt{\frac{x^4y^2}{y^6}}=5\sqrt{\frac{x^4}{y^4}}=5\)

27 tháng 10 2020

\(A=\frac{y}{x}\cdot\sqrt{\frac{x^2}{y^4}}=\frac{y}{x}\cdot\frac{\sqrt{x^2}}{\sqrt{y^4}}=\frac{y}{x}\cdot\frac{\left|x\right|}{\left|y^2\right|}=\frac{y}{x}\cdot\frac{x}{y^2}=\frac{1}{y}\)( x > 0 ; y > 0 )

30 tháng 5 2017

a, Ta có : \(\frac{y}{x}.\sqrt{\frac{x^2}{y^4}}=\frac{y}{x}.\frac{x}{y^2}=\frac{1}{y}\)

b , Ta có : \(5xy\sqrt{\frac{x^2}{y^6}}=5xy\frac{x}{y^3}=\frac{5x^2}{y^2}\)

c, Ta có : \(0,2x^3y^3\sqrt{\frac{16}{x^4y^8}}=0,2x^3y^3.\frac{4}{x^2y^4}=\frac{0,8x}{y}\)

27 tháng 10 2020

\(A=\frac{x}{y}.\frac{x}{y^2}=\frac{x^2}{y^3}\left(\text{vì }x>0;y< 0\text{ nên: }\frac{x}{y^2}>0\right)\)

27 tháng 10 2020

\(A=\frac{x}{y}\cdot\sqrt{\frac{x^2}{y^4}}=\frac{x}{y}\cdot\frac{\sqrt{x^2}}{\sqrt{y^4}}=\frac{x}{y}\cdot\frac{\left|x\right|}{\left|y^2\right|}=\frac{x}{y}\cdot\frac{x}{y^2}=\frac{x^2}{y^3}\)( x > 0 ; y < 0 )