Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
21. d[O,(P)]max => OA vuông góc (P) => n(P) =Vecto OA=(2; -1; 1)
=> (P):2x - y +z - 6 = 0. ĐA: D
22. D(x; 0; 0). AD = BC <=> (x-3)2 +16 = 25 => x = 0 v x = 6. ĐA: C
34. ĐA: A.
37. M --->Ox: A(3; 0; 0)
Oy: B(0; 1; 0)
Oz: C(0; 0;2)
Pt mp: x\3 + y\1+ z\2 = 1 <==> 2x + 6y + 3z - 6 = 0. ĐA: B
38) \(I=\int\limits_{\pi/2}^{2\pi/3} \frac{2dx}{2\sin x-\cos x+1}=\int\limits_{\pi/2}^{2\pi/3} \frac{2dx}{4\sin\frac{x}{2}\cos\frac{x}{2}+2\sin^2\frac{x}{2}}=\int\limits_{\pi/2}^{2\pi/3}\frac{dx}{\cos^2\frac{x}{2}(2\tan\frac{x}{2}+\tan^2\frac{x}{2})}\)
Đặt \(t=\tan\frac{x}{2}\Rightarrow dt=\frac{dx}{2\cos^2 \frac{x}{2}}\) và \(x=\frac{\pi}{2}\Rightarrow t=1,x=\frac{2\pi}{3}\Rightarrow t=\sqrt{3}.\)
Vậy \(I=\int\limits_1^{\sqrt{3}} \frac{2dt}{2t+t^2}=\int\limits_1^{\sqrt{3}} (\frac{1}{t}-\frac{1}{t+2})=(\ln |t|-\ln|t+2|)\Big|_1^{\sqrt{3}}=\frac{3}{2}\ln 3-\ln(2+\sqrt{3})\)
39) \(I=\int\limits_{\pi/6}^{\pi/3} \frac{\tan xdx}{\cos^2 x(1-\tan x)}\)
Đặt \(t=\tan x\Rightarrow dt=\frac{dx}{\cos^2 x}\) và \(x=\frac{\pi}{6}\Rightarrow t=\frac{1}{\sqrt{3}},x=\frac{\pi}{3}\Rightarrow t=\sqrt{3}.\)
Vậy \(I=\int\limits_{1/\sqrt{3}}^{\sqrt{3}}\frac{tdt}{1-t}==\int\limits_{1/\sqrt{3}}^{\sqrt{3}}(\frac{1}{1-t}-1)dt=(-\ln|1-t|-t)\Big|_{1/\sqrt{3}}^{\sqrt{3}}\)
Câu 31 thử ĐA
Câu 33: có công thức
Câu 35: Gọi A là giao điểm d và \(\Delta\) => A(1 +2t; t -1; -t )\(\in\) d
\(\overrightarrow{MA}=\left(2t-1;t-2;-t\right)\)\(\overrightarrow{MA}\perp\Delta\Rightarrow\overrightarrow{MA}.\overrightarrow{u_{\Delta}}=0\Leftrightarrow t=\dfrac{2}{3}\)=> ĐA: D
Em cần hỏi c 34 í ạ. Dạ còn c 31 kh có cách giải ra hả anh
Lời giải:
Bài 16
Khai triển:
\(F(x)=\int \frac{(x-1)^3}{2x^2}dx=\int \frac{x^3-3x^2+3x-1}{2x^2}dx=\int \frac{x}{2}dx-\int\frac{3}{2}dx+\int\frac{3}{2x}dx-\int\frac{dx}{2x^2}\)
Cụ thể có:
\(\int \frac{x}{2}dx=\frac{x^2}{4};\int\frac{3}{2}dx=\frac{3x}{2};\int\frac{3dx}{2x}=\frac{3}{2}\ln|x|;\int\frac{dx}{2x^2}=-\frac{1}{2x}\)
Do đó \(F(x)=\frac{x^2}{4}-\frac{3x}{2}+\frac{3\ln|x|}{2}+\frac{1}{2x}+c\)
Phương án D.
Bài 18:
Vì \(\int f(x)dx=\sin 2x\cos 2x\Rightarrow f(x)=(\sin 2x\cos 2x)'\)
\(\Leftrightarrow f(x)=(\frac{\sin 4x}{2})'=2\cos 4x\)
(không có đáp án đúng?)
Câu 36
Đặt \(\left\{\begin{matrix} u=\ln (\ln x)\\ dv=\frac{dx}{x}\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=\frac{1}{x\ln x}dx\\ v=\int\frac{dx}{x}=\ln x\end{matrix}\right.\)
Khi đó \(I=\ln x\ln(\ln x)-\int\ln x\frac{1}{x\ln x}dx=\ln x\ln(\ lnx)-\int\frac{dx}{x}=\ln x\ln (\ln x)-\ln x+c\)
Đáp án C
a/ \(\left(P\right):3\left(x-0\right)+0\left(y-2\right)+1\left(z+5\right)=0\Rightarrow\left(P\right):3x+z+5=0\)
b/\(\overrightarrow{AB}\left(2;4;-9\right);\overrightarrow{AC}\left(4;0;-7\right)\)
\(\overrightarrow{n_{\left(P\right)}}=\left[\overrightarrow{AB},\overrightarrow{AC}\right]=\left(4.\left(-7\right)-0.\left(-9\right);\left(-9\right).4-\left(-7\right).2;2.0-4.4\right)=\left(-28;-22;-16\right)\)
\(\Rightarrow\left(P\right):-28\left(x-0\right)-22\left(y-1\right)-16\left(z-7\right)=0\Rightarrow\left(P\right):28x+22y+16z-134=0\)
c/ Truc Oy di qua O(0;0;0) va co vtcp \(\overrightarrow{j}\left(0;1;0\right)\)
\(\overrightarrow{OD}\left(3;-6;2\right)\)
\(\Rightarrow\overrightarrow{n_{\left(P\right)}}=\left[\overrightarrow{j};\overrightarrow{OD}\right]=\left(2;0;-3\right)\)
\(\Rightarrow\left(P\right):2\left(x-0\right)+0\left(y-1\right)-3\left(z-0\right)=0\Rightarrow\left(P\right):2x-3z=0\)
d/ \(\overrightarrow{Oz}\left(0;0;1\right)\)
\(\overrightarrow{DE}\left(5;-2;-7\right)\)
\(\Rightarrow\overrightarrow{n_{\left(P\right)}}=\left[\overrightarrow{Oz};\overrightarrow{DE}\right]=\left(2;5;0\right)\)
\(\Rightarrow\left(P\right):2\left(x-0\right)+5\left(y-0\right)+0\left(z-1\right)=0\Rightarrow\left(P\right):2x+5y=0\)
e/ \(\overrightarrow{n_{Oyz}}=\overrightarrow{n_{\left(P\right)}}=\left(1;0;0\right)\)
\(\Rightarrow\left(P\right):1\left(x-3\right)=0\Rightarrow\left(P\right):x-3=0\)
f/ Cách làm giống câu b
g/ \(\overrightarrow{HI}=\overrightarrow{IK}\Rightarrow\left\{{}\begin{matrix}x_I=\dfrac{3-1}{2}=1\\y_I=\dfrac{-1+5}{2}=2\\z_1=\dfrac{2-4}{2}=-1\end{matrix}\right.\Rightarrow I\left(1;2;-1\right)\)
\(\overrightarrow{n_{\left(P\right)}}=\overrightarrow{HK}\left(-4;6;-6\right)\)
\(\Rightarrow\left(P\right):-4\left(x-1\right)+6\left(y-2\right)-6\left(z+1\right)=0\Rightarrow\left(P\right):-4x+6y-6z+2=0\)
P/s: Bạn tính toán lại kết quả hộ mình nhé !