![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Cách giải chung. Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk,c=dk\).
5. \(\frac{5a}{a+b}=\frac{5bk}{bk+b}=\frac{5k}{k+1}\)
\(\frac{5c}{c+d}=\frac{5dk}{dk+d}=\frac{5k}{k+1}\)
Suy ra đpcm.
6. \(\frac{a^2+3ab}{a^2-3b^2}=\frac{\left(bk\right)^2+3bk.b}{\left(bk\right)^2-3b^2}=\frac{k^2+3k}{k^2-3}\)
\(\frac{c^2+3cd}{c^2-3d^2}=\frac{\left(dk\right)^2+3dk.d}{\left(dk\right)^2-3d^2}=\frac{k^2+3k}{k^2-3}\)
Suy ra đpcm.
7, 8. Bạn làm tương tự.
![](https://rs.olm.vn/images/avt/0.png?1311)
☭☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭
![](https://rs.olm.vn/images/avt/0.png?1311)
a/ Xét tg vuông ABE và tg vuông PBE có
BE chung
\(\widehat{ABE}=\widehat{PBE}\left(gt\right)\)
\(\Rightarrow\Delta ABE=\Delta PBE\) (cạnh huyền và góc nhọn tương ứng bằng nhau)
b/ Xét tg ABI và tg PBI có
\(\Delta ABE=\Delta PBE\Rightarrow BA=BP\)
BI chung
\(\widehat{ABI}=\widehat{PBI}\left(gt\right)\)
\(\Rightarrow\Delta ABI=\Delta PBI\left(c.g.c\right)\Rightarrow AI=IP\) (1)
Xét tg vuông ACF và tg vuông QCF có
CF chung
\(\widehat{ACF}=\widehat{QCF}\left(gt\right)\)
\(\Rightarrow\Delta ACF=\Delta QCF\) (cạnh huyền và góc nhọn tương ứng bằng nhau)
Xét tg ACI và tg QCI có
\(\Delta ACF=\Delta QCF\Rightarrow AC=QC\)
CI chung
\(\widehat{ACI}=\widehat{QCI}\left(gt\right)\)
\(\Rightarrow\Delta ACI=\Delta QCI\left(c.g.c\right)\Rightarrow AI=IQ\) (2)
Từ (1) và (2) \(\Rightarrow AI=IP=IQ\)
c/
Xét tg QIP có
IQ=IP => tg QIP cân ở I
Mà \(ID\perp BC\)
\(\Rightarrow DQ=DP\) (Trong tg cân đường cao xuất phát từ đỉnh đồng thời là đường trung tuyến)
=> D là trung điểm của PQ
![](https://rs.olm.vn/images/avt/0.png?1311)
\(B=\left(\frac{1}{2^2}-1\right).\left(\frac{1}{3^2}-1\right).\left(\frac{1}{4^2}-1\right)......\left(\frac{1}{100^2}-1\right).\)
\(B=\frac{-3}{2^2}\times\frac{-8}{3^2}\times\frac{-15}{4^2}\times.....\times\frac{-9999}{100^2}\)
\(B=-\left(\frac{3}{2^2}\times\frac{8}{3^2}\times.....\times\frac{9999}{100^2}\right)\)(vì A là tích của 99 thừa số âm nên kết quả là âm )
\(B=-\left(\frac{1.3}{2.2}\times\frac{2.4}{3.3}\times.....\times\frac{99.101}{100.100}\right)\)
\(B=-\left(\frac{1.2.3...99}{2.3.4.....100}\times\frac{3.4.5....101}{2.3.4....100}\right)\)
\(B=-\left(\frac{1}{100}\times\frac{101}{2}\right)\)
\(B=-\frac{101}{200}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)