Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét A= \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=a.\frac{a}{b+c}+b.\frac{b}{c+a}+c.\frac{c}{a+b}\)
\(=a\left(\frac{a}{b+c}+1-1\right)+b\left(\frac{b}{c+a}+1-1\right)+c\left(\frac{c}{a+b}+1-1\right)\)
\(=a\left(\frac{a+b+c}{b+c}-1\right)+b\left(\frac{a+b+c}{c+a}-1\right)+c\left(\frac{a+b+c}{a+b}-1\right)\)
\(=a.\frac{a+b+c}{b+c}-a+b.\frac{a+b+c}{c+a}-b+c.\frac{a+b+c}{a+b}-c\)
\(=\left(a+b+c\right)\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)-\left(a+b+c\right)\) =0
Ta có: TS= \(x^{95}+x^{94}+...+x+1\)(1)
=> x\(\cdot TS=x^{96}+x^{95}+...+x^2+x\)(2)
Từ (1)(2)=> \(\left(x-1\right)TS=x^{96}-1\)
=> \(TS=\frac{x^{96}-1}{x-1}\)
Ta có: MS=\(x^{31}+x^{30}+x^{29}+...+x+1\)(3)
=> x\(\cdot MS=x^{32}+x^{31}+x^{30}+...+x^2+x\)(4)
Từ (4)(3)=> \(\left(x-1\right)\cdot MS=x^{32}-1\)
<=> \(MS=\frac{x^{32}-1}{x-1}\)
Vậy A= \(\frac{x^{96}-1}{x-1}:\frac{x^{32}-1}{x-1}=\frac{x^{96}-1}{x^{32}-1}\)
easy!
TH1:Với a+b+c=0 thì từ giả thiết,suy ra:
\(a+b=-c,b+c=-a,a+c=-b\)
Khi đó:\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=-3\left(VL\right)\)
TH2:Với a+b+c khác 0,ta nhân 2 vế của giải thiết với a+b+c,ta có:
\(\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\left(a+b+c\right)=a+b+c\)
\(\Leftrightarrow\frac{a^2}{b+c}+a+\frac{b^2}{a+c}+b+\frac{c^2}{a+b}+c=a+b+c\)
\(\Leftrightarrow\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}=0\left(đpcm\right)\)
Đề thiếu \(đk:a+b+c\ne0\)
Vì nếu a+b+c=0 thì \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=-3\) (không đúng)
Vậy bổ sung \(đk:a+b+c\ne0\)nhé bạn
Giải
\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=1\)
\(\Leftrightarrow\left(a+b+c\right)\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)=a+b+c\)
\(\Leftrightarrow\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}+\frac{a\left(b+c\right)}{b+c}+\frac{b\left(c+a\right)}{c+a}+\frac{c\left(a+b\right)}{a+b}=a+b+c\)
Suy ra \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=0^{\left(đpcm\right)}\)
Theo đề bài: ab+bc+ca=0
=> \(\frac{1}{c}+\frac{1}{b}+\frac{1}{a}=0\)(chia 2 vế cho abc)
<=> \(\frac{1}{c^3}+\frac{1}{b^3}+\frac{1}{a^3}=3\cdot\frac{1}{abc}\)(1)
( Áp dụng tính chất x+y+z=0 suy ra \(x^3+y^3+z^3=3zxy\)- Bạn tự Cm)
Ta có: P=\(\frac{bc}{a^2}+\frac{ac}{b^2}+\frac{ab}{c^2}=\)\(\frac{abc}{a^3}+\frac{abc}{b^3}+\frac{abc}{c^3}=abc\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)\)(2)
Từ (1)(2)=> P=abc\(\cdot3\cdot\frac{1}{abc}\)=3