Giúp mình với ạ, đề mình đánh lại biểu thức nha cho rõ nha...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2017

x2-3.(x-1)

(x-1)2

=>x2-3

x-1

10 tháng 12 2016

Xét A= \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=a.\frac{a}{b+c}+b.\frac{b}{c+a}+c.\frac{c}{a+b}\)

\(=a\left(\frac{a}{b+c}+1-1\right)+b\left(\frac{b}{c+a}+1-1\right)+c\left(\frac{c}{a+b}+1-1\right)\)

\(=a\left(\frac{a+b+c}{b+c}-1\right)+b\left(\frac{a+b+c}{c+a}-1\right)+c\left(\frac{a+b+c}{a+b}-1\right)\)

\(=a.\frac{a+b+c}{b+c}-a+b.\frac{a+b+c}{c+a}-b+c.\frac{a+b+c}{a+b}-c\)

\(=\left(a+b+c\right)\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)-\left(a+b+c\right)\) =0

22 tháng 7 2016

Ta có: TS= \(x^{95}+x^{94}+...+x+1\)(1)

=> x\(\cdot TS=x^{96}+x^{95}+...+x^2+x\)(2)

Từ (1)(2)=> \(\left(x-1\right)TS=x^{96}-1\)

=> \(TS=\frac{x^{96}-1}{x-1}\)

Ta có: MS=\(x^{31}+x^{30}+x^{29}+...+x+1\)(3)

=> x\(\cdot MS=x^{32}+x^{31}+x^{30}+...+x^2+x\)(4)

Từ (4)(3)=> \(\left(x-1\right)\cdot MS=x^{32}-1\)

<=> \(MS=\frac{x^{32}-1}{x-1}\)

Vậy A= \(\frac{x^{96}-1}{x-1}:\frac{x^{32}-1}{x-1}=\frac{x^{96}-1}{x^{32}-1}\)

 

10 tháng 1 2019

easy!

TH1:Với a+b+c=0 thì từ giả thiết,suy ra:

\(a+b=-c,b+c=-a,a+c=-b\)

Khi đó:\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=-3\left(VL\right)\)

TH2:Với a+b+c khác 0,ta nhân 2 vế của giải thiết với a+b+c,ta có:

\(\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\left(a+b+c\right)=a+b+c\)

\(\Leftrightarrow\frac{a^2}{b+c}+a+\frac{b^2}{a+c}+b+\frac{c^2}{a+b}+c=a+b+c\)

\(\Leftrightarrow\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}=0\left(đpcm\right)\)

10 tháng 1 2019

Đề thiếu \(đk:a+b+c\ne0\)

Vì nếu a+b+c=0 thì \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=-3\) (không đúng)

Vậy bổ sung  \(đk:a+b+c\ne0\)nhé bạn

                                                   Giải

\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=1\)

\(\Leftrightarrow\left(a+b+c\right)\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)=a+b+c\)

\(\Leftrightarrow\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}+\frac{a\left(b+c\right)}{b+c}+\frac{b\left(c+a\right)}{c+a}+\frac{c\left(a+b\right)}{a+b}=a+b+c\)

Suy ra \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=0^{\left(đpcm\right)}\)

22 tháng 7 2016

Theo đề bài: ab+bc+ca=0

=> \(\frac{1}{c}+\frac{1}{b}+\frac{1}{a}=0\)(chia 2 vế cho abc)

<=> \(\frac{1}{c^3}+\frac{1}{b^3}+\frac{1}{a^3}=3\cdot\frac{1}{abc}\)(1)

( Áp dụng tính chất x+y+z=0 suy ra \(x^3+y^3+z^3=3zxy\)- Bạn tự Cm)

Ta có: P=\(\frac{bc}{a^2}+\frac{ac}{b^2}+\frac{ab}{c^2}=\)\(\frac{abc}{a^3}+\frac{abc}{b^3}+\frac{abc}{c^3}=abc\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)\)(2)

Từ (1)(2)=> P=abc\(\cdot3\cdot\frac{1}{abc}\)=3

 

22 tháng 7 2016

Cảm ơn bạn nhiều nhóe!!!!!!!!!!!!!!vui