K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2018

\(B=x^2-x\)

\(B=x^2-2\cdot x\cdot\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2\)

\(B=\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\)

mà \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow B\ge\frac{1}{4}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)

Vậy Bmin = 1/4 <=> x = 1/2

P.s : đây là tìm B min

24 tháng 9 2018

Còn cách nữa tìm Bmax :v

Vì \(x^2\ge0\forall x\)

\(\Rightarrow B\le x\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x^2=0\Leftrightarrow x=0\)

Vậy Bmax = 0 <=> x = 0

13 tháng 6 2017

4 chia 3 dư 1 nên 4n chia 3 dư 1 hay 4n - 1 chia hết cho 3.

do đó 43^2014 - 1 chia hết cho 3.

24 tháng 11 2021

\(2b,=\left(2x^3-4x^2-4x^2+8x-2x+4-9\right):\left(2x-4\right)\\ =\left[\left(2x-4\right)\left(x^2-2x-2\right)-9\right]:\left(2x-4\right)\\ =x^2-2x-2\left(\text{ dư -9}\right)\)

30 tháng 6 2018

Đặt n+6=a2    n+1=b2 (a,b dương a>b)

=> \(a^2-b^2=5\)=> \(\left(a+b\right)\left(a-b\right)=5\)=> \(\hept{\begin{cases}a+b=5\\a-b=1\end{cases}}\)=> \(\hept{\begin{cases}a=3\\b=2\end{cases}}\)=>\(n=3^2-6=2^2-1=3\)

Mình làm đại đó,ahihi  :v