Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Để \(\frac{\sqrt{x-3}}{2x+1}\)có nghĩa thì 2x+1 \(\ne\)0
\(\Leftrightarrow\)2x \(\ne\)-1
\(\Leftrightarrow\)x \(\ne\)\(\frac{-1}{2}\)
b. Để \(\frac{\sqrt{1-2x}}{x^2-6x+9}\) có nghĩa thì x2-6x+9\(\ne\)0
\(\Leftrightarrow\)(x-3)2 \(\ne\)0
\(\Leftrightarrow\)x-3 \(\ne\)0
\(\Leftrightarrow\)x \(\ne\)3
a.\(DK:\frac{2}{3}\le x< 4\)
b.\(DK:x>\frac{1}{2},x\ne\frac{5}{2}\)
c.\(DK:x\le-3\)
Bạn MaiLink ơi, bạn có thể ghi rõ ra các bước làm được không? mình không hiểu lắm. cảm ơn bạn
C = \(\left(1-\frac{x-3\sqrt{x}}{x-9}\right):\)\(\left(\frac{-\sqrt{x}+3}{\sqrt{x}-2}+\frac{\sqrt{x}-2}{\sqrt{x}+3}-\frac{9-x}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\right)\)( \(x\ge0\) , \(x\ne9;4\))
= \(\frac{x-9-x+3\sqrt{x}}{x-9}\): \(\frac{9-x+\left(\sqrt{x}-2\right)^2-9+x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)
= \(\frac{3\sqrt{x}-9}{x-9}\): \(\frac{\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)
= \(\frac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)\(:\frac{\sqrt{x}-2}{\sqrt{x}+3}\)
= \(\frac{3}{\sqrt{x}+3}.\frac{\sqrt{x}+3}{\sqrt{x}-2}\)
= \(\frac{3}{\sqrt{x}-2}\)
#mã mã#
\(A=\frac{1}{\sqrt{x-1}-\sqrt{x}}+\frac{1}{\sqrt{x-1}+\sqrt{x}}+\frac{\sqrt{x^3}-x}{\sqrt{x}-1}\) \(ĐKXĐ:x\ne\pm1\)
\(=\frac{\sqrt{x-1}+\sqrt{x}+\sqrt{x-1}-\sqrt{x}}{\left(\sqrt{x-1}-\sqrt{x}\right)\left(\sqrt{x-1}+\sqrt{x}\right)}+\frac{x\sqrt{x}-x}{\sqrt{x}-1}\)
\(=\frac{2\sqrt{x-1}}{x-1-x}+\frac{x\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)
\(=x-2\sqrt{x-1}\)
Câu c mình ko làm được
\(a,\sqrt{4-4x+x^2}+\sqrt{\frac{2}{x^2+6x+9}}=\sqrt{\left(x-2\right)^2}+\sqrt{\frac{2}{\left(x+3\right)^2}}\)
\(đkxđ\Leftrightarrow\hept{\begin{cases}x+2\ge0\\x+3>0\end{cases}\Rightarrow\hept{\begin{cases}x\ge-2\\x>-3\end{cases}\Rightarrow}x\ge-2}\)
\(b,\frac{5\sqrt{x}}{\sqrt{x}-3}+\frac{2}{\sqrt{x}}\)
\(đkxđ\Leftrightarrow\hept{\begin{cases}x>0\\\sqrt{x}-3\ne0\end{cases}\Rightarrow\hept{\begin{cases}x>0\\\sqrt{x}\ne\sqrt{9}\end{cases}\Rightarrow}\hept{\begin{cases}x>0\\x\ne9\end{cases}}}\)
\(c,\sqrt{3-\sqrt{x}}\)
\(đkxđ\Leftrightarrow\hept{\begin{cases}x\ge0\\3-\sqrt{x}\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ge0\\\sqrt{x}\le3\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x>0\\\sqrt{x}\le9\end{cases}\Rightarrow\hept{\begin{cases}x>0\\x\le3\end{cases}}}\)
\(\Rightarrow0< x\le3\)
1,
\(A=\left(\frac{a\sqrt{a}-1}{a-\sqrt{a}}-\frac{a\sqrt{a}+1}{a+\sqrt{a}}\right):\frac{a+2}{a-2}\left(đk:a\ne0;1;2;a\ge0\right)\)
\(=\frac{\left(a\sqrt{a}-1\right)\left(a+\sqrt{a}\right)-\left(a\sqrt{a}+1\right)\left(a-\sqrt{a}\right)}{a^2-a}.\frac{a-2}{a+2}\)
\(=\frac{a^2\sqrt{a}+a^2-a-\sqrt{a}-\left(a^2\sqrt{a}-a^2+a-\sqrt{a}\right)}{a\left(a-1\right)}.\frac{a-2}{a+2}\)
\(=\frac{2a\left(a-1\right)\left(a-2\right)}{a\left(a-1\right)\left(a+2\right)}=\frac{2\left(a-2\right)}{a+2}\)
Để \(A=1\)\(=>\frac{2a-4}{a+2}=1< =>2a-4-a-2=0< =>a=6\)
2,
a, Điều kiện xác định của phương trình là \(x\ne4;x\ge0\)
b, Ta có : \(B=\frac{2\sqrt{x}}{x-4}+\frac{1}{\sqrt{x}-2}-\frac{1}{\sqrt{x}+2}\)
\(=\frac{2\sqrt{x}}{x-4}+\frac{\sqrt{x}+2}{x-4}-\frac{\sqrt{x}-2}{x-4}\)
\(=\frac{2\sqrt{x}+2+2}{x-4}=\frac{2\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{2}{\sqrt{x}-2}\)
c, Với \(x=3+2\sqrt{3}\)thì \(B=\frac{2}{3-2+2\sqrt{3}}=\frac{2}{1+2\sqrt{3}}\)
Bài 1:
a, (Xin được sửa đề bài) \(C=\sqrt{x-2-2\sqrt{x-3}}-\sqrt{x+1-4\sqrt{x-3}}\)
\(=\sqrt{x-3-2\sqrt{x-3}+1}-\sqrt{x-3-4\sqrt{x-3}+4}\)
\(=\sqrt{\left(\sqrt{x-3}-1\right)^2}-\sqrt{\left(\sqrt{x-3}-2\right)^2}\)
\(=\sqrt{x-3}-1-\sqrt{x-3}+2=1\)
b, \(D=\sqrt{m^2}-\sqrt{m^2-10m+25}\)
\(=m-\sqrt{\left(m-5\right)^2}\)
\(=m-m+5=5\)
Bài 2:
a, \(VT=\sqrt{x+2\sqrt{x-2}-1}.\left(\sqrt{x-2}-1\right):\left(\sqrt{x}-\sqrt{3}\right)\)
\(=\sqrt{x-2+2\sqrt{x-2}+1}.\left(\sqrt{x-2}-1\right):\left(\sqrt{x}-\sqrt{3}\right)\)
\(=\sqrt{\left(\sqrt{x-2}+1\right)^2}.\left(\sqrt{x-2}-1\right):\left(\sqrt{x}-\sqrt{3}\right)\)
\(=\left(\sqrt{x-2}-1\right)\left(\sqrt{x-2}+1\right):\left(\sqrt{x}-\sqrt{3}\right)\)
\(=\left(x-3\right):\left(\sqrt{x}-\sqrt{3}\right)\)
\(=\sqrt{x}+\sqrt{3}=VP\)
b, \(VT=\left(\frac{1}{a-\sqrt{a}}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a}+1}{a+1-2\sqrt{a}}\)
\(=\left(\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)^2}\)
\(=\left(\frac{\sqrt{a}-1+\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)^2}\right):\frac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)^2}\)
\(=\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)^2}:\frac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)^2}\)
\(=\frac{\left(\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}:\frac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)^2}\)
\(=\frac{\sqrt{a}-1}{\sqrt{a}}=VP\)
x>=0
x khác -3;1