Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5\sqrt{18}-\sqrt{50}+\sqrt{8}\)
\(=5\sqrt{2.9}-\sqrt{25.2}+\sqrt{2.4}\)
\(=15\sqrt{2}-5\sqrt{2}+2\sqrt{2}\)
\(=12\sqrt{2}\)
\(5\sqrt{18}-\sqrt{50}+\sqrt{8}=9.899494937\)
P/s; Tôi ko chắc đâu mới lớp 5 thôi
mik thấy bạn đang chơi bọn mình đấy nhé. bạn giải theo cột dọc, mỗi người chúng mik cho bạn 1 tích
\(A=\sqrt{3+\sqrt{5}}+\sqrt{7-3\sqrt{5}}-\sqrt{2}\)
\(=\sqrt{\frac{6+2\sqrt{5}}{2}}+\sqrt{\frac{14-6\sqrt{5}}{2}}-\sqrt{2}\)
\(=\sqrt{\frac{\left(\sqrt{5}+1\right)^2}{2}}+\sqrt{\frac{\left(3-\sqrt{5}\right)^2}{2}}-\sqrt{2}\)
\(=\frac{\sqrt{5}+1}{\sqrt{2}}+\frac{3-\sqrt{5}}{\sqrt{2}}-\sqrt{2}\)
\(=2\sqrt{2}-\sqrt{2}\)
\(\frac{3\sqrt{10}+\sqrt{20}-3\sqrt{6}-\sqrt{12}}{\sqrt{5}-\sqrt{3}}\)
\(=\frac{3\sqrt{10}+2\sqrt{5}-3\sqrt{6}-2\sqrt{3}}{\sqrt{5}-\sqrt{3}}\)
\(=\frac{\left(3\sqrt{10}-3\sqrt{6}\right)+\left(2\sqrt{5}-2\sqrt{3}\right)}{\sqrt{5}-\sqrt{3}}\)
\(=\frac{3\sqrt{2}\left(\sqrt{5}-\sqrt{3}\right)+2\left(\sqrt{5}-\sqrt{3}\right)}{\sqrt{5}-\sqrt{3}}\)
\(=3\sqrt{2}+2\)
Nếu đề bài cho vô hạn dấu căn thì ta làm như sau :
Nhận xét : A > 0
Ta có : \(A=\sqrt{2\sqrt{2\sqrt{2\sqrt{2\sqrt{...}}}}}\)
\(\Rightarrow A^2=2\sqrt{2\sqrt{2\sqrt{2\sqrt{.....}}}}=2A\)
\(\Rightarrow A^2-2A=0\Rightarrow A\left(A-2\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}A=0\left(\text{loại}\right)\\A=2\left(\text{nhận}\right)\end{array}\right.\)
Vậy A = 2
\(1\left(\sqrt{2}+1\right)\left(\sqrt{3}+1\right)\left(\sqrt{6}+1\right)\left(5-2\sqrt{2}-\sqrt{3}\right)\)
\(=1\left(\sqrt{3}+1\right)\left(\sqrt{6}+1\right)\left(1+3\sqrt{2}-\sqrt{6}-\sqrt{3}\right)\)
\(=1\left(\sqrt{6}+1\right)\left(2\sqrt{6}-2\right)\)
\(=2\left(\sqrt{6}-1\right)\left(\sqrt{6}+1\right)=10\)
Cứ nhân lần lược vào rồi rút gọn sẽ được như trên
\(\sqrt{\frac{3-\sqrt{5}}{3+\sqrt{5}}+\sqrt{\frac{3+\sqrt{5}}{3-\sqrt{5}}}}=\sqrt{\frac{7-3\sqrt{5}}{2}+\frac{3+\sqrt{5}}{2}}\)
\(=\sqrt{5-\sqrt{5}}\)
Đáp án :
= \(\infty\)
Bài toán này chúng tôi chịu ! Chắc là sai đề bài.
8 896 : 635 + 1 023
= \(\frac{8896}{635}\)+ 1 023
= \(\frac{658501}{635}\)