K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2021

đề đâu

22 tháng 10 2021

đề đâu mà giải được

25 tháng 7 2019

\(\sqrt{14-8\sqrt{3}}\)\(=\sqrt{6-2.4.\sqrt{3}+8}\)

\(=\sqrt{\left(\sqrt{6}\right)^2-2\sqrt{3.16}+\left(\sqrt{8}\right)^2}\)

\(=\sqrt{\left(\sqrt{6}\right)^2-2\sqrt{48}+\left(\sqrt{8}\right)^2}\)

\(=\sqrt{\left(\sqrt{6}-\sqrt{8}\right)^2}\)

\(=\sqrt{6}-\sqrt{8}\)

18 tháng 8 2019

gọi số có 2 chữ số đólà ab (a,b\(\in\)N; a>0)

ta có: a + b = 9

a = 2b

a + b = 3b

9 = 3b

b=3

a=6

ta có số 63

18 tháng 8 2019

Gọi số đó là \(\overline{ab}\left(a;b\inℕ;a\ne0\right)\)

Theo bài ra , ta có : \(a=2b\)

\(\Rightarrow a+b=2b+b=3b\)

Do đó :\(3b=9\)

\(\Rightarrow b=3\)

Khi đó : \(a=9-3=6\)

Vậy số cần tìm là 63

4 tháng 10 2020

\(A=\frac{x+\sqrt{x}}{x-2\sqrt{x}+1}\div\left(\frac{\sqrt{x}+1}{\sqrt{x}}-\frac{1}{1-\sqrt{x}}+\frac{2-x}{x-\sqrt{x}}\right)\)

ĐKXĐ : x > 1

\(=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2}\div\left(\frac{\sqrt{x}+1}{\sqrt{x}}+\frac{1}{\sqrt{x}-1}+\frac{2-x}{\sqrt{x}\left(\sqrt{x}-1\right)}\right)\)

\(=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2}\div\left(\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{2-x}{\sqrt{x}\left(\sqrt{x}-1\right)}\right)\)

\(=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2}\div\left(\frac{x-1+\sqrt{x}+2-x}{\sqrt{x}\left(\sqrt{x}-1\right)}\right)\)

\(=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2}\times\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}+1}\)

\(=\frac{x}{\sqrt{x}-1}\)

Để A = 9/2

=> \(\frac{x}{\sqrt{x}-1}=\frac{9}{2}\)( ĐK : x > 1 )

<=> 2x = 9( √x - 1 )

<=> 2x = 9√x - 9

<=> 2x + 9 = 9√x (1)

Bình phương hai vế

(1) <=> 4x2 + 36x + 81 = 81x

     <=> 4x2 + 36x + 81 - 81x = 0

     <=> 4x2 - 45x + 81 = 0

     <=> 4x2 - 36x - 9x + 81 = 0

     <=> 4x( x - 9 ) - 9( x - 9 ) = 0

     <=> ( x - 9 )( 4x - 9 ) = 0

     <=> \(\orbr{\begin{cases}x-9=0\\4x-9=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=9\\x=\frac{9}{4}\end{cases}}\)( tm )

AH
Akai Haruma
Giáo viên
16 tháng 8 2021

Bài 2:

a. Áp dụng định lý Pitago:

$BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5$ (cm)

$AH=\frac{2S_{ABC}}{BC}=\frac{AB.AC}{BC}=\frac{3.4}{5}=2,4$ (cm)

Áp dụng định lý Pitago:

$BH=\sqrt{AB^2-AH^2}=\sqrt{3^2-2,4^2}=1,8$ (cm)

$CH=\sqrt{AC^2-AH^2}=\sqrt{4^2-2,4^2}=3,2$ (cm)

b.

Áp dụng hệ thức lượng trong tam giác vuông:

$AH^2=BH.CH=9.16$

$\Rightarrow AH=12$ (cm)

Áp dụng định lý Pitago:

$AB=\sqrt{AH^2+BH^2}=\sqrt{12^2+9^2}=15$ (cm)

$AC=\sqrt{AH^2+CH^2}=\sqrt{12^2+16^2}=20$ (cm)

$BC=BH+CH=9+16=25$ (cm)

AH
Akai Haruma
Giáo viên
16 tháng 8 2021

Bài 3:

Vì $AB:AC=3:4$ nên đặt $AB=3a; AC=4a$ (cm)

Áp dụng định lý Pitago:
$15=BC=\sqrt{AB^2+AC^2}=\sqrt{(3a)^2+(4a)^2}=5a$

$\Rightarrow a=3$ (cm)

$AH=\frac{AB.AC}{BC}=\frac{3a.4a}{5a}=2,4a$ (cm)

$BH=\sqrt{AB^2-AH^2}=\sqrt{(3a)^2-(2,4a)^2}=1,8a=1,8.3=5,4$ (cm)

$CH=\sqrt{AC^2-AH^2}=\sqrt{(4a)^2-(2,4a)^2}=3,2a=3,2.3=9,6$ (cm)

 

15 tháng 12 2016

. . A B O H C D I

a) Vì AD là tiếp tuyến của (O)

=> \(AD\perp AB\)

=> \(\widehat{DAB}=90^o\)

CÓ: OA=OB=OC(=R)

=> CO là tiếp tuyến của ΔABC

Mà: \(CO=\frac{1}{1}AB\left(cmt\right)\)

=> ΔABC vuông tại C

=> \(AC\perp BC\)

Xét ΔABD vuông tại A(cmt), mà AC là đường cao(cmt)

=> \(BC\cdot BD=AB^2\) ( theo hệ thức trong tam giác vuông)

=> \(BC\cdot BD=\left(2\cdot OB\right)^2=4R^2\)

b) Có: OA=OC(cmt)

=> ΔOAC cân tại O

=> \(\widehat{ACO}=\widehat{CAO}\)

Xét ΔACD vuông tại C(cmt)

mà: CI là tiếp tuyến ứng vs cạnh AD

=> IC=IA

=> ΔIAC cân tại I

=> \(\widehat{IAC}=\widehat{ICA}\)

Có: \(\widehat{IAC}+\widehat{CAO}=\widehat{DAB}=90^o\)

=> \(\widehat{ICA}+\widehat{ACO}=90^o\)

Hay: \(\widehat{ICO}=90^o\)

=> IC là tiếp tuyến của (O)

Phần c đề sai

15 tháng 12 2016

Cảm ơn bạn ha ^^

9 tháng 8 2016

\(A=\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{2}{\sqrt{x}+1}-\frac{2}{\sqrt{x}-1}\)

Biểu thức  \(A\)  có nghĩa khi  \(\hept{\begin{cases}\sqrt{x}+1\ne0;\text{ }x\ge0\\\sqrt{x}-1\ne0\end{cases}}\)  \(\Leftrightarrow\)  \(\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)

Ta có:

\(A=\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{2}{\sqrt{x}+1}-\frac{2}{\sqrt{x}-1}=\frac{\sqrt{x}\left(\sqrt{x}+1\right)-2\left(\sqrt{x}-1\right)-2\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(A=\frac{x+\sqrt{x}-2\sqrt{x}+2-2\sqrt{x}-2}{x-1}=\frac{x-3\sqrt{x}}{x-1}\)

Vậy,  \(A=\frac{x-3\sqrt{x}}{x-1}\)

9 tháng 8 2016

đề đúng hk bn

27 tháng 10 2016

Mình nghĩ là không tồn tại  , số chính phương hay ta có thể gọi nó là lũy thừa căn bậc 2 của 1 số , mà đây ta có các chữ số đều giống nhau , không thể thực hiên .

Các chữ số giống nhau nên nếu a có tồn tại thì a sẽ là các chữ số từ 1 - 9 ( a không thể là 0 )

mà các số đều dư khi sử dụng căn bậc \(\sqrt{ }\)

nên không có bất cứ số a nào thỏa mãn đề bài 

27 tháng 10 2016

bạn giải hẳn ra để cm la ko dc hộ mình với