Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đăt A= đề bài ta có A=1-1/2+1/2-1/3+1/3-1/4+...+1/2017-1/2018
A=1-1/2018=2017/2018
Ta có :
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2017.2018}\)
\(=\)\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\)
\(=\)\(1-\frac{1}{2018}\)
\(=\)\(\frac{2017}{2018}\)
Chúc bạn học tốt ~
Ta có : \(C=\frac{1}{2}+\left(-\frac{2}{3}\right)+\left(-\frac{2}{3}\right)^2+\left(-\frac{2}{3}\right)^3+......+\left(-\frac{2}{3}\right)^{2018}\)
\(\Rightarrow C=\frac{1}{2}-\left(\frac{2}{3}+\left(\frac{2}{3}\right)^2+\left(\frac{2}{3}\right)^3+.....+\left(\frac{2}{3}\right)^{2018}\right)\)
Đặt \(\Rightarrow A=\frac{2}{3}+\left(\frac{2}{3}\right)^2+\left(\frac{2}{3}\right)^3+.....+\left(\frac{2}{3}\right)^{2018}\)
\(\Rightarrow\frac{2}{3}A=\left(\frac{2}{3}\right)^2+\left(\frac{2}{3}\right)^3+\left(\frac{2}{3}\right)^4+.....+\left(\frac{2}{3}\right)^{2019}\)
\(\Rightarrow A-\frac{2}{3}A=\frac{2}{3}-\frac{2}{3}^{2019}\)
\(\Rightarrow\frac{1}{3}A=\frac{2}{3}-\left(\frac{2}{3}\right)^{2019}\)
=> A = \(\left(\frac{2}{3}-\left(\frac{2}{3}\right)^{2019}\right).3\)
=> A = 2 - \(\frac{2^{2019}}{3^{2018}}\)
\(3A=1+\frac{1}{3}+...+\frac{1}{3^{2017}}\)
\(3A-A=\left(1+\frac{1}{3}+...+\frac{1}{3^{2017}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2018}}\right)\)
\(2A=1-\frac{1}{3^{2018}}\)
\(A=\frac{1-\frac{1}{3^{2018}}}{2}\)
đặt \(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2018}}\)
\(3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2017}}\)
\(3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2017}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2018}}\right)\)
\(2A=1-\frac{1}{3^{2018}}\)
\(A=\frac{1-\frac{1}{3^{2018}}}{2}\)
đặt \(B=1+5+5^2+...+5^{2018}\)
\(5B=5+5^2+5^3+...+5^{2019}\)
\(5B-B=\left(5+5^2+5^3+...+5^{2019}\right)-\left(1+5+5^2+...+5^{2018}\right)\)
\(4B=5^{2019}-1\)
\(B=\frac{5^{2019}-1}{4}\)
\( S =1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}+\frac{1}{2019}\)
\(\Rightarrow S=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2017}+\frac{1}{2018}+\frac{1} {2019}-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right) \)
\(\Rightarrow S=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}-\left(1+\frac{1}{2}+...+\frac{1}{1009}\right)\)
\(\(\Rightarrow S=\frac{1}{1010}+\frac{1}{1011}+...+\frac{1}{2019}\) \(\Rightarrow S=P\)\)
\(B=\frac{2018}{1}+\frac{2017}{2}+\frac{2016}{3}+...+\frac{1}{2018}\)
\(B=1+\left(\frac{2017}{2}+1\right)+\left(\frac{2016}{3}+1\right)+...+\left(\frac{1}{2018}+1\right)\)
\(B=\frac{2019}{2019}+\frac{2019}{2}+\frac{2019}{3}+...+\frac{2019}{2018}\)
\(B=2019\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}+\frac{1}{2019}\right)\)
ta có \(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}}{2019\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}\right)}=\frac{1}{2019}\)
Đặt \(S=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}}{\frac{2017}{1}+\frac{2016}{2}+...+\frac{1}{2017}}\)
Biến đổi mẫu
\(\frac{2017}{1}+\frac{2016}{2}+...+\frac{1}{2017}\)
\(=\left(2017+1\right)+\left(\frac{2016}{2}+1\right)+...+\left(\frac{1}{2017}+1\right)-2017\)
\(=2018+\frac{2018}{2}+...+\frac{2018}{2017}+\frac{2018}{2018}-2018\)
\(=2018.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}\right)\)
\(\Rightarrow S=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}}{2018.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}\right)}=\frac{1}{2018}\)
\(A=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+.....+\frac{1}{2018}\left(1+2+3+...+2018\right)\)
\(=1+\frac{1}{2}\cdot\frac{2.\left(2+1\right)}{2}+\frac{1}{3}\cdot\frac{3.\left(3+1\right)}{2}+...+\frac{1}{2018}\cdot\frac{2018\left(2018+1\right)}{2}\)
\(=1+\frac{3}{2}+\frac{4}{2}+....+\frac{2019}{2}\)
\(=\frac{2+3+4+...+2019}{2}\)
\(=\frac{\frac{2019\left(2019+1\right)}{2}-1}{2}=1019594.5\)