Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 14)
\(a,\\ =-\dfrac{3}{8}+\dfrac{8}{17}+\dfrac{-5}{8}-\dfrac{3}{5}+\dfrac{9}{17}\\ =\left(\dfrac{-3}{8}+\dfrac{-5}{8}\right)+\left(\dfrac{8}{17}+\dfrac{9}{17}\right)-\dfrac{3}{5}\\ =\left(-1\right)+1-\dfrac{3}{5}=0-\dfrac{3}{5}=\dfrac{-3}{5}\\ b,\\ =\dfrac{7}{15}.\dfrac{-15}{14}+\left(\dfrac{27}{16}-\dfrac{1}{8}\right):\dfrac{5}{8}\)
\(=\dfrac{-1}{2}+\dfrac{25}{16}.\dfrac{8}{5}=\dfrac{-1}{2}+\dfrac{5}{2}=2\\ c,\\ =\dfrac{2}{2}-\dfrac{2}{3}+\dfrac{2}{3}-\dfrac{2}{4}+.....+\dfrac{2}{99}-\dfrac{2}{100}\\ =1-\dfrac{1}{50}=\dfrac{49}{50}\)
Câu 15
\(a,2x+\dfrac{-1}{4}=\dfrac{3}{2}\\ 2x=\dfrac{3}{2}-\dfrac{-1}{4}=\dfrac{7}{4}\\ x=\dfrac{7}{4}:2=\dfrac{7}{8}\\ b,\dfrac{15}{x}=\dfrac{-3}{4}\\ x=\dfrac{15.4}{-3}=-20\)
Nếu là z+x thì mik biết làm nè:
Đặt x-y=2011(1)
y-z=-2012(2)
z+x=2013(3)
Cộng (1);(2);(3) lại với nhau ta được :
2x=2012=>x=1006
Từ (1) => y=-1005
Từ (3) => z=1007
vào cái này nè https://olm.vn/hoi-dap/detail/23559453393.html nó giải cho bn rồi
Từ đề bài ta có:
\(T=\dfrac{1+2}{2}.\dfrac{1+3}{3}.\dfrac{1+4}{4}...\dfrac{1+98}{98}.\dfrac{1+99}{99}\)
\(=\dfrac{3}{2}.\dfrac{4}{3}.\dfrac{5}{4}...\dfrac{99}{98}.\dfrac{100}{99}\)
\(=\dfrac{100}{2}\)
\(=50\).
\(T=\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}+1\right)\left(\dfrac{1}{4}+1\right)...\left(\dfrac{1}{98}+1\right)\left(\dfrac{1}{99}+1\right)\)
\(T=\dfrac{3}{2}.\dfrac{4}{3}.\dfrac{5}{4}....\dfrac{99}{98}.\dfrac{100}{99}\)
\(T=\dfrac{3.4.5......99}{3.4.5......99}.\dfrac{100}{2}\)
\(T=50\)
bài này chúng tớ làm nhiều rùi
neu cau noi the thi thui
Ta có :
\(A=\dfrac{1}{4}+\dfrac{1}{9}+\dfrac{1}{16}+.........................+\dfrac{1}{81}+\dfrac{1}{10^2}\)
\(A=\dfrac{1}{4}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+.....................+\dfrac{1}{9^2}+\dfrac{1}{10^2}\)
Mà :
\(\dfrac{1}{3^2}>\dfrac{1}{3.4}\)
\(\dfrac{1}{4^2}>\dfrac{1}{4.5}\)
\(\dfrac{1}{5^2}>\dfrac{1}{5.6}\)
.........................................
\(\dfrac{1}{9^2}>\dfrac{1}{9.10}\)
\(\dfrac{1}{10^2}>\dfrac{1}{10.11}\)
\(\Rightarrow A>\dfrac{1}{4}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+........................+\dfrac{1}{9.10}+\dfrac{1}{10^2}\)
\(\Rightarrow A>\dfrac{1}{4}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...................+\dfrac{1}{9}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{11}\)
\(\Rightarrow A>\dfrac{1}{4}+\dfrac{1}{3}-\dfrac{1}{11}\)
\(\Rightarrow A>\dfrac{7}{12}-\dfrac{1}{11}\)
\(\Rightarrow A>\dfrac{65}{132}\)\(\rightarrowđpcm\)
Ta có
A = \(\dfrac{1}{4}+\dfrac{1}{9}+\dfrac{1}{16}+...+\dfrac{1}{81}+\dfrac{1}{100}\)
A = \(\dfrac{1}{4}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{9.9}+\dfrac{1}{10.10}\)
Vì \(\dfrac{1}{3.3}>\dfrac{1}{3.4}\)
\(\dfrac{1}{4.4}>\dfrac{1}{4.5}\)
.................
\(\dfrac{1}{9.9}>\dfrac{1}{9.10}\)
\(\dfrac{1}{10.10}>\dfrac{1}{10.11}\)
=> A > \(\dfrac{1}{4}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{9.10}+\dfrac{1}{10.11}\)
A > \(\dfrac{1}{4}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{9}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{11}\)
A > \(\dfrac{1}{4}+\dfrac{1}{3}-\dfrac{1}{11}\)
A > \(\dfrac{7}{12}-\dfrac{1}{11}\)
A > \(\dfrac{65}{132}\)
Vậy A > \(\dfrac{65}{132}\) < đpcm)
Bài 1:
a: Ta có: \(\left|x+3\right|\ge0\forall x\)
\(\left|y-2\right|\ge0\forall y\)
Do đó: \(\left|x+3\right|+\left|y-2\right|\ge0\forall x,y\)
Dấu '=' xảy ra khi x=-3 và y=2
b: Ta có: \(\left|x+3\right|=4\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=4\\x+3=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-7\end{matrix}\right.\)
c: Ta có: \(\left|-x+5\right|=\left|1-5\right|\)
\(\Leftrightarrow\left|x-5\right|=4\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=4\\x-5=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=9\\x=1\end{matrix}\right.\)
Bài 16:
a: Ta có: \(\left|x\right|-x=0\)
\(\Leftrightarrow\left|x\right|=x\)
\(\Leftrightarrow x\ge0\)
b: Ta có: \(\left|x\right|+x=0\)
\(\Leftrightarrow\left|x\right|=-x\)
\(\Leftrightarrow x\le0\)
c: Ta có: \(\left|x\right|-5=-12+30\)
\(\Leftrightarrow\left|x\right|=18+5=23\)
hay \(x\in\left\{-23;-23\right\}\)
d: Ta có: \(-11-\left|x\right|=-17\)
\(\Leftrightarrow\left|x\right|=6\)
hay \(x\in\left\{6;-6\right\}\)