K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2017

hix méo có ai làm đc à @@ hay là chỉ là cái lướt nhẹ qua = =

Tl

Bài này cũng hơi khó

#Kirito

1 tháng 7 2017

chắc đề sai đó bn

mà mấy bài này bạn chứng minh bằng quy nạp là ra

26 tháng 1 2016

bn ơi đề kiu j vậy
 

26 tháng 1 2016

\(\frac{1}{\sqrt{a-1}+\sqrt{a}}=\frac{\sqrt{a}-\sqrt{a-1}}{\left(\sqrt{a}-\sqrt{a-1}\right)\left(\sqrt{a}+\sqrt{a-1}\right)}=\frac{\sqrt{a}-\sqrt{a-1}}{a-a+1}=\sqrt{a}-\sqrt{a-1}\)
Áp dụng cái này vào là ra bạn nhé

21 tháng 8 2018

A= n(n^2 +7n+6) ví A chia hết 125 nên A cũng chia hết cho 5 => n có số cuối la 0 hoặc 5 (1)

A chia hết 125 => A luôn luôn viết được dạng tích 125xB ( B thuộc N khác 0)

TH1: n chia hết 125 => n nhỏ nhất la 125

TH2: (n^2+7n+6)=C chia hết 125 

C có số cuối là 0 hoặc 5 và lớn hơn 125

th1. C có số cuối la 0 : C = n(n+7) +6 

C có số cuối 0 khi n(n+7) có số cuối là 4

theo (1) n kết thúc là số 0 hoặc 5 => vô nghiệm.

th2. C có số cuối là 5 =>n(n+7) kết thúc là số 9

theo (1) n kết thúc là 0 hoặc 5 => vô nghiệm

Vậy n nhỏ nhất la 125 thì A chia hêt 125

23 tháng 8 2018

Mình tìm được 24 bạn ơi😮😮

2 tháng 10 2020

\(\sqrt{n}-\sqrt{n-1}< \frac{1}{100}\Leftrightarrow\frac{1}{\sqrt{n}-\sqrt{n-1}}>100\Leftrightarrow\sqrt{n}+\sqrt{n-1}>100\left(1\right)\)

Đến đây có thể giải bpt(1) bằng cách chuyển vế \(\sqrt{n-1}>100-\sqrt{n}\), bình phương 2  vế và đưa về \(\sqrt{n}>50,005\). do đó \(n>2500,500025\). Do \(n\in N\)và nhỏ nhất nên n=2501

Cũng có thể ước lượng từ (1) để thấy \(\sqrt{n}\)vào khoảng 50. Với \(n\le2500\)thì \(\sqrt{n}+\sqrt{n-1}\le\sqrt{2500}+\sqrt{2499}< 100\)

Với n=2501 thì \(\sqrt{n}+\sqrt{n-1}=\sqrt{2501}+\sqrt{2500}>100\)

Ta chọn n=2501