loading...
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b: ΔOAH cân tại O(Do A,H cùng nằm trên (O))

mà OD là đường cao

nên OD là phân giác của góc AOH

Xét ΔOAD và ΔOHD có

OA=OH

góc AOD=góc HOD

OD chung

Do đó: ΔOAD=ΔOHD

=>góc OHD=góc OAD=90 độ

=>DH vuông góc OH

28 tháng 8 2023

thanks

 

 

 

8 tháng 8 2023

Chắc câu c quá, tại tổng 2 ô vuông của hình chữ nhật có 10 chấm tròn. =)

8 tháng 8 2023

Em nghĩ là câu c vì thấy tổng của các chấm tròn ở mỗi miếng đều là 10.

NV
6 tháng 3 2023

1.

a. Em tự giải

b.

\(\left\{{}\begin{matrix}2x+y=4m-1\\3x-2y=-m+9\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}4x+2y=8m-2\\3x-2y=-m+9\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}7x=7m+7\\y=\dfrac{3x+m-9}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=m+1\\y=2m-3\end{matrix}\right.\)

Để \(x+y=7\Rightarrow m+1+2m-3=7\)

\(\Rightarrow3m=9\Rightarrow m=3\)

NV
6 tháng 3 2023

2.

a. Em tự giải

b.

Phương trình có 2 nghiệm khi:

\(\Delta'=\left(m+1\right)^2-\left(2m+10\right)=m^2-9\ge0\)

\(\Rightarrow\left[{}\begin{matrix}m\ge3\\m\le-3\end{matrix}\right.\)

Khi đó theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=2m+10\end{matrix}\right.\)

Ta có:

\(P=x_1^2+x_2^2+8x_1x_2=\left(x_1+x_2\right)^2+6x_1x_2\)

\(=4\left(m+1\right)^2+6\left(2m+10\right)=4m^2+20m+64\)

\(=4\left(m^2+5m+6\right)+40=4\left(m+2\right)\left(m+3\right)+40\)

Do \(\left[{}\begin{matrix}m\ge3\\m\le-3\end{matrix}\right.\) \(\Rightarrow\left(m+2\right)\left(m+3\right)\ge0\)

\(\Rightarrow P\ge40\)

Vậy \(P_{min}=40\) khi \(m=-3\)

(Nếu bài này giải là \(4m^2+20m+64=\left(2m+5\right)^2+39\ge39\) là sai vì dấu = khi đó xảy ra tại \(m=-\dfrac{5}{2}\) ko thỏa mãn điều kiện \(\Delta\) để pt có nghiệm)

S
28 tháng 8

a. xét △ BIA và △ BAC có:

góc BIA = góc BAC = 90 độ

góc IAB = góc ACB (cùng phụ với góc B)

⇒ △ BIA ~ △ BAC (g-g)

\(\Rightarrow\frac{AB}{IB}=\frac{BC}{AB}\Rightarrow AB^2=IB\cdot BC\)

b. xét △ BIA và △ AIC ta có:

góc BIA = góc AIC = 90 độ

góc IAB = góc ICA (cùng phụ với góc B)

⇒ △ BIA ~ △ AIC (g-g)

\(\Rightarrow\frac{IA}{IB}=\frac{IC}{IA}\Rightarrow IA^2=IB\cdot IC\)

c. áp dụng định lý pythagore vào △ ABC vuông tại A ta có:

\(AB=\sqrt{BC^2-AC^2}=\sqrt{26^2-10^2}=24\left(\operatorname{cm}\right)\)

ta có: AB.AC = BC.AI

\(\Rightarrow AI=\frac{AB\cdot AC}{BC}=\frac{24\cdot10}{26}=\frac{120}{13}\left(\operatorname{cm}\right)\)

△ ABC vuông tại A có:

\(\sin B=\frac{AC}{BC}=\frac{10}{26}\Rightarrow\) góc B ≈ 23⁰

⇒ góc C = 90⁰ - 23⁰ = 67⁰

d. xét tứ giác AHIK có:

góc BAC = góc AHI = góc IKA = 90 độ

⇒ tứ giác AHIK là hình chữ nhật

⇒ AI = HK = \(\frac{120}{13}\left(\operatorname{cm}\right)\)

e. xét △ AKI và △ AIC ta có:

góc AKI = góc AIC = 90 độ

góc AIK = góc ACI (cùng phụ với góc IAK)

⇒ △ AKI ~ △ AIC (g-g)

\(\frac{AK}{AI}=\frac{AI}{AC}\Rightarrow AI^2=AK\cdot AC\) (1)

áp dụng định lý pythagore vào △ AIB vuông tại I ta có:

\(AI^2=AB^2-BI^2\) (2)

TỪ (1) và (2) ⇒ \(AK\cdot AC=AB^2-BI^2\)

gọi O là giao điểm của đường chéo HK và AI

AHIK là hình chữ nhật ⇒ OH = OA

⇒ △ OHA cân tại O

⇒ góc OHA = góc OAH

xét △ AHK và △ ACB ta có:

góc A chung

góc AHK = góc ACB (cùng bằng HAO)

⇒ △ AHK ~ △ ACB (g-g)

f. vì góc ACB = góc IAB (câu a)

nên \(\cot ACB=\cot IAB=\frac{AH}{HI}\) (3)

mà góc AHO = góc IAB (câu e)

\(\Rightarrow\cot IAB=\cot AHO=\frac{AH}{AK}\) (4)

từ (3) và (4) \(\frac{AH}{HI}=\frac{AH}{AK}\)

mà HI = AK (tứ giác AHIK là hình chữ nhật)

\(\Rightarrow\cot ACB=\frac{AH}{AK}\Rightarrow AH=AK\cdot\cot ACB\) (đpcm)

S
28 tháng 8

https://www.mediafire.com/view/081yqwybhunkx2n/4775e38e-3527-4b6b-b173-16c028c7b87b.jfif/file

link hình ảnh, mình không up ảnh lên được

S
28 tháng 8

a. xét △ BIA và △ BAC có:

góc BIA = góc BAC = 90 độ

góc IAB = góc ACB (cùng phụ với góc B)

⇒ △ BIA ~ △ BAC (g-g)

\(\Rightarrow\frac{AB}{IB}=\frac{BC}{AB}\Rightarrow AB^2=IB\cdot BC\)

b. xét △ BIA và △ AIC ta có:

góc BIA = góc AIC = 90 độ

góc IAB = góc ICA (cùng phụ với góc B)

⇒ △ BIA ~ △ AIC (g-g)

\(\Rightarrow\frac{IA}{IB}=\frac{IC}{IA}\Rightarrow IA^2=IB\cdot IC\)

c. áp dụng định lý pythagore vào △ ABC vuông tại A ta có:

\(AB=\sqrt{BC^2-AC^2}=\sqrt{26^2-10^2}=24\left(\operatorname{cm}\right)\)

ta có: AB.AC = BC.AI

\(\Rightarrow AI=\frac{AB\cdot AC}{BC}=\frac{24\cdot10}{26}=\frac{120}{13}\left(\operatorname{cm}\right)\)

△ ABC vuông tại A có:

\(\sin B=\frac{AC}{BC}=\frac{10}{26}\Rightarrow\) góc B ≈ 23⁰

⇒ góc C = 90⁰ - 23⁰ = 67⁰

d. xét tứ giác AHIK có:

góc BAC = góc AHI = góc IKA = 90 độ

⇒ tứ giác AHIK là hình chữ nhật

⇒ AI = HK = \(\frac{120}{13}\left(\operatorname{cm}\right)\)

e. xét △ AKI và △ AIC ta có:

góc AKI = góc AIC = 90 độ

góc AIK = góc ACI (cùng phụ với góc IAK)

⇒ △ AKI ~ △ AIC (g-g)

\(\frac{AK}{AI}=\frac{AI}{AC}\Rightarrow AI^2=AK\cdot AC\) (1)

áp dụng định lý pythagore vào △ AIB vuông tại I ta có:

\(AI^2=AB^2-BI^2\) (2)

TỪ (1) và (2) ⇒ \(AK\cdot AC=AB^2-BI^2\)

gọi O là giao điểm của đường chéo HK và AI

AHIK là hình chữ nhật ⇒ OH = OA

⇒ △ OHA cân tại O

⇒ góc OHA = góc OAH

xét △ AHK và △ ACB ta có:

góc A chung

góc AHK = góc ACB (cùng bằng HAO)

⇒ △ AHK ~ △ ACB (g-g)

f. vì góc ACB = góc IAB (câu a)

nên \(\cot ACB=\cot IAB=\frac{AH}{HI}\) (3)

mà góc AHO = góc IAB (câu e)

\(\Rightarrow\cot IAB=\cot AHO=\frac{AH}{AK}\) (4)

từ (3) và (4) \(\frac{AH}{HI}=\frac{AH}{AK}\)

mà HI = AK (tứ giác AHIK là hình chữ nhật)

\(\Rightarrow\cot ACB=\frac{AH}{AK}\Rightarrow AH=AK\cdot\cot ACB\) (đpcm)

S
28 tháng 8

https://www.mediafire.com/view/081yqwybhunkx2n/4775e38e-3527-4b6b-b173-16c028c7b87b.jfif/file

link hình ảnh, mình không up ảnh lên được

a: Kẻ OI⊥CD tại I

ΔOCD cân tại O

mà OI là đường cao

nên I là trung điểm của CD

=>IC=ID

ΔOMN cân tại O

mà OI là đường cao

nên I là trung điểm của MN

=>IM=IN

Ta có: IM+MC=IC

IN+ND=ID

mà IM=IN và IC=ID

nên MC=ND

b: ΔOMN vuông tại O có OM=ON

nên ΔOMN vuông cân tại O

=>\(MN^2=OM^2+ON^2=2\cdot OM^2\)

=>\(MN=OM\cdot\sqrt2\)

Vì CM=MN=ND

nên \(CM=MN=ND=\frac{CD}{3}\)

=>\(CD=3\cdot MN=3\sqrt2\cdot OM\)

I là trung điểm của CD

=>\(IC=\frac{CD}{2}=\frac{3\sqrt2}{2}\cdot OM\)

ΔOMN vuông cân tại O

=>\(\hat{OMI}=45^0\)

Xét ΔOMI vuông tại I có \(\hat{OMI}=45^0\)

nên ΔOMI vuông cân tại I

=>\(IM=IO\)

ΔOMI vuông tại I

=>\(IM^2+IO^2=OM^2\)

=>\(OM^2=2\cdot IO^2\)

=>\(IO^2=\frac{OM^2}{2}\)

ΔOIC vuông tại I

=>\(OI^2+IC^2=OC^2\)

=>\(OI^2=OC^2-IC^2=R^2-\left(\frac{3\sqrt2}{2}\cdot OM\right)^2=R^2-OM^2\cdot\frac92\)

=>\(\frac{OM^2}{2}+\frac92\cdot OM^2=R^2\)

=>\(R^2=5\cdot OM^2\)

=>\(OM^2=\frac{R^2}{5}\)

=>\(OM=\frac{R\sqrt5}{5}\)

28 tháng 8

Bạn học CMATH phải không vậy bạn? Mình thấy phiếu quen quen.

a: Xét ΔCOA có

CH là đường cao

CH là đường trung tuyến

Do đó: ΔCOA cân tại C

=>CO=CA

mà OC=OA

nên OC=OA=CA

=>ΔOCA đều

=>\(\hat{OCA}=\hat{OAC}=\hat{AOC}=60^0\)

ΔOCD cân tại O

mà OH là đường cao

nên H là trung điểm của CD và OH là phân giác của góc COD

Xét tứ giác OCAD có

H là trung điểm chung của OA và CD

=>OCAD là hình bình hành

Hình bình hành OCAD có OC=OD

nên OCAD là hình thoi

OA là phân giác của góc COD

=>\(\hat{COD}=2\cdot\hat{COA}=120^0\)

=>Sđ cung CD=120 độ

b: OCAD là hình thoi

=>CH là phân giác của góc OCA

=>\(\hat{OCH}=\frac12\cdot\hat{OCA}=30^0\)

Ta có: \(\hat{OCH}+\hat{SCH}=\hat{SCO}\) (tia CH nằm giữa hai tia CO và CS)

=>\(\hat{SCH}=90^0-30^0=60^0\)

Xét ΔOCS vuông tại C và ΔODS vuông tại D có

OS chung

OC=OD

Do đó: ΔOCS=ΔODS

=>SC=SD

Xét ΔSCD có SC=SD và \(\hat{SCD}=60^0\)

nên ΔSCD đều

28 tháng 8

Bạn học CMATH phải không vậy bạn? Mình thấy phiếu quen quen.

3 tháng 8 2023

Đáp án b

Các hình màu xanh là phản chiếu của các hình máu cam trong gương.

3 tháng 8 2023

Nhìn sơ sơ đoán là chọn B

Kiểu 2 hình ở gần (đáy hình cam trên và đỉnh hình xanh dưới sẽ giống nhau), 2 hình còn lại giống nhau tại vị trí đỉnh trên hình cam và đáy dưới hình xanh

QT
Quoc Tran Anh Le
Giáo viên
30 tháng 8

Bài 2: Để hệ có nghiệm duy nhất thì \(\frac{1}{a}<>\frac{a}{1}\)

=>\(a^2<>1\)

=>a∉{1;-1](1)

\(\begin{cases}ax+y=3a\\ x+ay=2a+1\end{cases}\Rightarrow\begin{cases}y=3a-ax\\ x+a\left(3a-ax\right)=2a+1\end{cases}\)

=>\(\begin{cases}y=3a-a\cdot x\\ x+3a^2-a^2\cdot x=2a+1\end{cases}\Rightarrow\begin{cases}y=3a-ax\\ x\left(1-a^2\right)=2a+1-3a^2\end{cases}\)

=>\(\begin{cases}x=\frac{-3a^2+2a+1}{1-a^2}=\frac{3a^2-2a-1}{a^2-1}=\frac{\left(a-1\right)\left(3a+1\right)}{\left(a-1\right)\left(a+1\right)}=\frac{3a+1}{a+1}\\ y=3a-a\cdot\frac{3a+1}{a+1}=\frac{3a^2+3a-3a^2-a}{a+1}=\frac{2a}{a+1}\end{cases}\)

Để x,y nguyên thì \(\begin{cases}3a+1\vdots a+1\\ 2a\vdots a+1\end{cases}\Rightarrow\begin{cases}3a+3-2\vdots a+1\\ 2a+2-2\vdots a+1\end{cases}\)

=>-2⋮a+1

=>a+1∈{1;-1;2;-2}

=>a∈{0;-2;1;-3}

Kết hợp (1), ta có: a∈{0;-2;-3}

Bài 3:

ĐKXĐ: x>=y

\(\begin{cases}\sqrt{\frac{x+y}{2}}+\sqrt{\frac{x-y}{3}}=14\\ \sqrt{\frac{x+y}{8}}-\sqrt{\frac{x-y}{12}}=3\end{cases}\Rightarrow\begin{cases}\sqrt{\frac{x+y}{2}}+\sqrt{\frac{x-y}{3}}=14\\ \frac12\left(\sqrt{\frac{x+y}{2}}-\sqrt{\frac{x-y}{3}}\right)=3\end{cases}\)

=>\(\begin{cases}\sqrt{\frac{x+y}{2}}+\sqrt{\frac{x-y}{3}}=14\\ \sqrt{\frac{x+y}{2}}-\sqrt{\frac{x-y}{3}}=6\end{cases}\Rightarrow\begin{cases}\sqrt{\frac{x+y}{2}}=10\\ \sqrt{\frac{x-y}{3}}=4\end{cases}\)

=>\(\begin{cases}\frac{x+y}{2}=100\\ \frac{x-y}{3}=16\end{cases}\Rightarrow\begin{cases}x+y=200\\ x-y=48\end{cases}\Rightarrow\begin{cases}x=\frac{200+48}{2}=\frac{248}{2}=124\\ y=200-124=76\end{cases}\) (nhận)