loading...
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2024

13) 

a) \(\left\{{}\begin{matrix}7x+4y=2\\5x-2y=16\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7x+4y=2\\10x-4y=32\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}7x+4y=2\\17x=34\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7\cdot2+4y=2\\x=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4y=2-14\\x=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4y=-12\\x=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-3\\x=2\end{matrix}\right.\)

Vậy: .... 

b) \(\left\{{}\begin{matrix}2x+3y=19\\3x+4y=-14\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x+9y=57\\6x+8y=-28\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+3y=19\\y=85\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+3\cdot85=19\\y=85\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x=19-255\\y=85\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=-236\\y=85\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-118\\y=85\end{matrix}\right.\)

Vậy: .... 

c) \(\left\{{}\begin{matrix}2x+2y=3\\3x-2y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x=5\\3x-2y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\3\cdot1-2y=2\end{matrix}\right.\)

 \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\-2y=2-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\-2y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{1}{2}\end{matrix}\right.\)

Vậy: ....

20 tháng 6 2024

15) 

a) \(\left\{{}\begin{matrix}5\left(x+2\right)=2\left(y+7\right)\\3\left(x+y\right)=17-x\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}5x+10=2y+14\\3x+3y=17-x\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}5x-2y=14-10\\3x+3y+x=17\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}5x-2y=4\\4x+3y=17\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}15x-6y=12\\8x+6y=34\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}5x-2y=4\\23x=46\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}5\cdot2-2y=4\\x=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2y=6\\x=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=3\\x=2\end{matrix}\right.\)

vậy: ... 

NV
16 tháng 1 2024

a.

\(A=\left(\dfrac{\left(x-1\right)\left(x^2+x+1\right)}{x\left(x-1\right)}+\dfrac{\left(x-2\right)\left(x+2\right)}{x\left(x-2\right)}+\dfrac{x-2}{x}\right):\dfrac{x+1}{x}\)

\(=\left(\dfrac{x^2+x+1}{x}+\dfrac{x+2}{x}+\dfrac{x-2}{x}\right):\dfrac{x+1}{x}\)

\(=\left(\dfrac{x^2+3x+1}{x}\right).\dfrac{x}{x+1}\)

\(=\dfrac{x^2+3x+1}{x+1}\)

2.

\(x^3-4x^3+3x=0\Leftrightarrow x\left(x^2-4x+3\right)=0\)

\(\Leftrightarrow x\left(x-1\right)\left(x-3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=1\left(loại\right)\\x=3\end{matrix}\right.\)

Với \(x=3\Rightarrow A=\dfrac{3^2+3.3+1}{3+1}=\dfrac{19}{4}\)

30 tháng 1 2024

4.linda sometimes brings her home made after the class

30 tháng 1 2024

Linh 6A3(THCS Mai Đình) à

 

 

AH
Akai Haruma
Giáo viên
3 tháng 2 2024

Bài 4:

a. Vì $\triangle ABC\sim \triangle A'B'C'$ nên:

$\frac{AB}{A'B'}=\frac{BC}{B'C'}=\frac{AC}{A'C'}(1)$ và $\widehat{ABC}=\widehat{A'B'C'}$

$\frac{DB}{DC}=\frac{D'B'}{D'C}$

$\Rightarrow \frac{BD}{BC}=\frac{D'B'}{B'C'}$

$\Rightarrow \frac{BD}{B'D'}=\frac{BC}{B'C'}(2)$

Từ $(1); (2)\Rightarrow \frac{BD}{B'D'}=\frac{BC}{B'C'}=\frac{AB}{A'B'}$

Xét tam giác $ABD$ và $A'B'D'$ có:

$\widehat{ABD}=\widehat{ABC}=\widehat{A'B'C'}=\widehat{A'B'D'}$

$\frac{AB}{A'B'}=\frac{BD}{B'D'}$

$\Rightarrow \triangle ABD\sim \triangle A'B'D'$ (c.g.c)

b.

Từ tam giác đồng dạng phần a và (1) suy ra:
$\frac{AD}{A'D'}=\frac{AB}{A'B'}=\frac{BC}{B'C'}$

$\Rightarrow AD.B'C'=BC.A'D'$

 

AH
Akai Haruma
Giáo viên
3 tháng 2 2024

Hình bài 4:

AH
Akai Haruma
Giáo viên
13 tháng 1 2024

Bạn cần hỗ trợ bài nào nhỉ?

NV
16 tháng 1 2024

ĐKXĐ: \(\left|x-2\right|-1\ne0\)

\(\Rightarrow\left|x-2\right|\ne1\)

\(\Rightarrow\left\{{}\begin{matrix}x-2\ne1\\x-2\ne-1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x\ne3\\x\ne1\end{matrix}\right.\)