Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b)x3-2x2-4xy2+x
=x(x2-2x-4y2+1)
=x[(x2-2x+1)-4y2]
=x[(x-1)2-4y2]
=x(x-1-2y)(x-1+2y)
c) (x+2)(x+3)(x+4)(x+5)-8
=[(x+2)(x+5)][(x+3)(x+4)]-8
=(x2+5x+2x+10)(x2+4x+3x+12)-8
=(x2+7x+10)(x2+7x+12)-8
đặt x2+7x+10 =a ta có
a(a+2)-8
=a2+2a-8
=a2+4a-2a-8
=(a2+4a)-(2a+8)
=a(a+4)-2(a+4)
=(a+4)(a-2)
thay a=x2+7x+10 ta đc
(x2+7x+10+4)(x2+7x+10-2)
=(x2+7x+14)(x2+7x+8)
bài 2 x3-x2y+3x-3y
=(x3-x2y)+(3x-3y)
=x2(x-y)+3(x-y)
=(x-y)(x2+3)
1) \(\frac{x-y}{z-y}=-10\Leftrightarrow x-y=10\left(y-z\right)\)
\(\Leftrightarrow x-y=10y-10z\)
\(\Leftrightarrow x=11y-10z\)
Thay x=11y-10z vào biểu thức \(\frac{x-z}{y-z}\), ta có:
\(\frac{11y-10z-z}{y-z}=\frac{11y-11z}{y-z}=\frac{11\left(y-z\right)}{y-z}=11\)
Chá quá, có ghi nhìn không rõ đề
2) \(2x^2=9x-4\)
\(\Leftrightarrow2x^2-9x+4=0\)
\(\Leftrightarrow2x^2-8x-x+4=0\)
\(\Leftrightarrow2x\left(x-4\right)-1\left(x-4\right)\)
\(\Leftrightarrow\left(2x-1\right)\left(x-4\right)=0\)
\(\Leftrightarrow2x-1=0\) hoặc x-4=0
1) 2x-1=0<=>x=1/2
2)x-4=0<=>x=4(Loại)
=> x=1/2
A B M C D I K H x y K'
Kẻ hình phụ và các điểm như hình trên. (chú ý CK' , IH , DK vuông góc với AB)
Dễ dàng chứng minh được IK và IK' lần lượt là các đường trung bình của hình thang CDBM và CDMA => K, K' cố định
=> \(\begin{cases}IK=\frac{1}{2}\left(CM+BD\right)\\IK'=\frac{1}{2}\left(AC+MD\right)\end{cases}\)
\(\Rightarrow IK=IK'=\frac{1}{2}AB\) không đổi
Vì IK // BD nên góc DBA = góc IKA = 60 độ
=> tam giác IKK' là tam giác đều có cạnh không đổi
Từ I kẻ đường cao IH => H là trung điểm AB =>H cố định (1) . Đặt AB = a
\(\Rightarrow IH^2=IK^2-\left(\frac{IK}{2}\right)^2=\left(\frac{a}{2}\right)^2-\left(\frac{a}{4}\right)^2=\frac{3a^2}{16}\Rightarrow IH=\frac{a\sqrt{3}}{4}\)(2) không đổi
Suy ra \(I\in\left(H;\frac{a\sqrt{3}}{4}\right)\) hay tập hợp quỹ tích điểm I thuộc đường tròn tâm H bán kính \(\frac{a\sqrt{3}}{4}\)
Bài 4:
a: ĐKXĐ: \(x\notin\left\{1;-1\right\}\)
b: \(M=\dfrac{x}{2x-2}+\dfrac{x^2+1}{2-2x^2}\)
\(=\dfrac{x}{2\left(x-1\right)}-\dfrac{x^2+1}{2\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{x^2+x-x^2-1}{2\left(x-1\right)\left(x+1\right)}=\dfrac{1}{2\left(x+1\right)}\)
c: Để M=1/2 thì 2(x+1)=2
=>x+1=1
hay x=0
Bài 2 :
a ) \(25-20x+4x^2=0\)
\(\Leftrightarrow\left(5-2x\right)^2=0\)
\(\Leftrightarrow5-2x=0\Rightarrow x=\dfrac{5}{2}\)
Vậy \(x=\dfrac{5}{2}\)
a,\(\left(-2x^2+3x\right)\left(x^2-x+3\right)\\ \Leftrightarrow-2x^4+2x^3-6x^2+3x^3-3x^2+9x\\ \Leftrightarrow-2x^4+5x^3-3x^2+3x\)
\(b,x\left(x-2\right)\left(x+2\right)-\left(x-3\right)\left(x^2+3x+9+6\right)+6\left(x+1\right)^2=15\\ \Leftrightarrow x\left(x^2-4\right)-\left(x^3-27\right)+6\left(x^2+2x+1\right)=15\\ \Leftrightarrow x^3-4x-x^3+27+6x^2+12x+6=15\\ \Leftrightarrow6x^2+8x+18=0\\ \Leftrightarrow6\left(x^2+\dfrac{4}{3}x+3\right)=0\\ \Leftrightarrow\left(x+\dfrac{2}{3}\right)^2+\dfrac{23}{9}=0\)
Với mọi x thì \(\left(x+\dfrac{2}{3}\right)^2\ge0\Rightarrow\left(x+\dfrac{2}{3}\right)^2+\dfrac{23}{9}>0\)
Do đó ko tìm đc giá trị nào của x thỏa mãn đề bài
Vậy..
a) x3 - 4x2 + 4x
= x(x2 - 4x + 4)
= x(x - 2)2
b) x2 - 3x + 2
= x2 - x - 2x + 2
= (x2 - x) + (2x - 2)
= x(x - 1) + 2(x - 1)
= (x + 2)(x - 1)
c) 8x3 + \(\dfrac{1}{27}\)
= \(\left(2x+\dfrac{1}{3}\right)\)\(\left(4x^2-\dfrac{2}{3}x+\dfrac{1}{9}\right)\)
d) 64x3 - \(\dfrac{1}{8}\)
= \(\left(4x+\dfrac{1}{2}\right)\left(16x^2-2x+\dfrac{1}{4}\right)\)
e) x2 - 4 + (x - 2)2
= (x + 2)(x - 2) - (x - 2)2
= (x - 2)[(x + 2) - (x - 2)]
= (x - 2)(x + 2 - x + 2)
= 4(x - 2)
f) x3 - 2x3 + x - xy2
= -x3 + x - xy2
= -x(x2 - 1 + y2)
g) x3 - 4x2 - 12x + 27
= (x3 + 27) - (4x2 + 12x)
= (x + 3)(x2 - 3x + 9) - 4x(x + 3)
= (x + 3)[(x2 - 3x + 9) - 4x]
= (x + 3)(x2 - 3x + 9 - 4x)
= (x + 3)(x2 - 7x + 9)
h) 2x - 2y - x2 + 2xy - y2
= (2x - 2y) - (x2 - 2xy + y2)
= 2(x - y) - (x - y)2
= (x - y)(2 - x + y)
i) 3x2 + 6x + 3 - 3y2
= 3(x2 + 2x + 1 - y2)
= 3[(x2 + 2x + 1) - y2]
= 3[(x + 1)2 - y2]
= 3( x + 1 - y)(x + 1 + y)
k) 25 - x2 - y2 + 2xy
= 25 - (x2 - 2xy + y2)
= 25 - (x - y)2
= (5 - x + y)(5 + x - y)
l) 3x - 3y - x2 + 2xy - y2
= (3x - 3y) - (x2 - 2xy + y2)
= 3(x - y) - (x - y)2
= (x - y)(3 - x + y)
m) x2 - y2 + 2x - 2y
= (x2 - y2) + (2x - 2y)
= (x - y)(x + y) + 2(x - y)
= (x - y)(x + y + 2)
n) x4 + 2x3 - 4x - 4
= (x4 - 4) + (2x3 - 4x)
= (x2 - 2)(x2 + 2) + 2x(x2 - 2)
= (x2 - 2)(x2 + 2 + 2x)
o) x2(1 - x2) - 4x - 4x2
= x2(1 - x)( 1 + x) - 4x(1 + x)
= x(1 + x)[x(1 - x) - 4x]
= x(x + 1)(x - x2 - 4)
p) x3 + y3 + z3 - 3xyz
= x3 + y3 + z3 - 3x2y + 3x2y - 3xy2 + 3xy2 - 3xyz
= [(x3 + 3x2y + 3xy2 + y3) + z3] - (3x2y + 3xy2 + 3xyz)
= [(x + y)3 + z3] - 3xy(x + y + z)
= (x + y + z)[(x + y)2 - (x + y)z + z2] - 3xy(x + y + z)
= (x + y + z)(x2 + 2xy + y2 - xz - yz + z2 - 3xy)
= (x + y + z)(x2 + y2 + z2 - xy - xz - yz)
q) (x - y)3 + (y - z)3 + (z - x)3
= [(x - y) + (y - z)][(x - y)2 - (x - y)(y - z) + (y - z)2] + (z - x)3
= (x - z)(x2 - 2xy + y2 - xy + xz - y2 + yz + y2 - 2yz + z2) - (x - z)3
= (x - z)(x2 + y2 + z2 - 3xy + xz - yz) - (x - z)3
= (x - z)[x2 + y2 + z2 - 3xy + xz - yz - (x - z)2]
= (x - z)(x2 + y2 - 3xy + xz - yz - x2 + 2xz - z2)
= (x - z)(y2 - 3xy + 3xz - yz)
= (x - z)[(y2 - yz) - (3xy - 3xz)]
= (x - z)[y(y - z) - 3x(y - z)
= (x - z)(y - 3x)(y - z)
Nhớ tik nha