K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
24 tháng 8 2021

15.

Gọi $\overrightarrow{v}=(a,b)$

Theo bài ra ta có:

$T_{\overrightarrow{v}}(B)=A$

$\Leftrightarrow \overrightarrow{BA}=\overrightarrow{v}$

$\Leftrightarrow (-4,4)=\overrightarrow{v}$

AH
Akai Haruma
Giáo viên
8 tháng 10 2020

4.

Bạn nhớ tính chất sau: phép tịnh tiến theo vecto $\overrightarrow{v}$ biến đường thẳng thành chính nó khi và chỉ khi $\overrightarrow{v}$ là vecto chỉ phương của đường thẳng $d$.

Dễ thấy $\overrightarrow{u_d}=(1,2)$ nên $\overrightarrow{v}=(1,2)$. Đáp án C.

Giải theo cách thuần thông thường:

Gọi vecto cần tìm là $\overrightarrow{v}=(a,b)$

Gọi $M(x,2x+1)$ là điểm thuộc đường thẳng $d$

$M'(x',y')=T_{\overrightarrow{v}}(M)\in (d)$

\(\Rightarrow \left\{\begin{matrix} x'=x+a; y'=2x+1+b\\ 2x'-y'+1=0\end{matrix}\right.\)

\(\Rightarrow 2(x+a)-(2x+1+b)+1=0\)

\(\Leftrightarrow 2a=b\)

Vậy $\overrightarrow{v}=(1,2)$

29 tháng 1 2017

Ta có: A(-1; 2) ∈ (d): 3x + y + 1 = 0.

Giải bài 2 trang 34 sgk Hình học 11 | Để học tốt Toán 11

⇒ (d’): 3x + y – 6 = 0.

b. ĐOy (A) = A1 (1 ; 2)

Lấy B(0 ; -1) ∈ d

Ảnh của B qua phép đối xứng trục Oy: ĐOy (B) = B(0; -1) (vì B ∈ Oy).

⇒ d1 = ĐOy (d) chính là đường thẳng A1B.

⇒ d1: 3x – y – 1 = 0.

c. Phép đối xứng tâm O biến A thành A2(1; -2).

d2 là ảnh của d qua phép đối xứng tâm O

⇒ d2 // d và d2 đi qua A2(1 ; -2)

⇒ (d2): 3x + y – 1 = 0.

d. Gọi M(-1; 0) và N(0; 2) lần lượt là hình chiếu của A(-1; 2) trên Ox, Oy.

Q(O;90º) biến N thành N’(-2; 0), biến A thành A’, biến M thành B(0; -1).

Vậy Q(O;90º) biến hình chữ nhật ONAM thành hình chữ nhật ON’A’B. Do đó A’(-2; -1) đi qua A và B, Q(O;90º) biến A thành A’(-2; -1) biến B thành B’(1; 0)

Vậy Q(O;90º) biến d thành d’ qua hai điểm A’, B’

Do đó phương trình d’ là :

Giải bài 2 trang 34 sgk Hình học 11 | Để học tốt Toán 11

15 tháng 1 2018

Gọi tam giác A'B'C' là ảnh của tam giác ABC qua phép biến hình trên.

Giải bài 1 trang 125 sgk Hình học 11 | Để học tốt Toán 11

(e)Phép đồng dạng có được bằng cách thực hiện liên tiếp phép đối xứng qua trục Oy và phép vị tự tâm O tỉ số k = -2

+) Qua phép đối xứng qua trục Oy biến tam giác ABC thành tam giác  A 1 B 1 C 1

Giải bài tập Toán 11 | Giải Toán lớp 11

Do đó, tọa độ A 1 - 1 ;   1 ;   B 1 0 ;   3   v à   C 1 - 2 ;   4 .

+) Qua phép vị tự tâm O tỉ số k = -2 biến tam giác  A 1 B 1 C 1  thành tam giác  A 2 B 2 C 2

Biểu thức tọa độ :

Giải bài tập Toán 11 | Giải Toán lớp 11

Tương tự; B 2   0 ;   - 6   v à   C 2   4 ;   - 8

Vậy qua phép đối xứng trục Oy và phép vị tự tâm O tỉ số k = -2, biến các điểm A, B, C lần lượt thành

A 2 2 ;   - 2 ;   B 2 0 ;   - 6   v à   C 2   4 ;   - 8 .

24 tháng 7 2018

NV
21 tháng 12 2020

Đáp án C đúng

\(\left\{{}\begin{matrix}x_{M'}=2x_M=2.3=6\\y_{M'}=2y_M=2.\left(-2\right)=-4\end{matrix}\right.\)

\(\Rightarrow M'\left(6;-4\right)\)

22 tháng 12 2020

Cảm ơn bạn

NV
29 tháng 9 2020

1.

Theo công thức tạo độ phép tịnh tiến:

\(\left\{{}\begin{matrix}x_{A'}=x_A+3=5\\y_{A'}=y_A+1=4\end{matrix}\right.\) \(\Rightarrow A'\left(5;4\right)\)

\(\left\{{}\begin{matrix}x_{B'}=x_B+3=4\\y_{B'}=y_B+1=2\end{matrix}\right.\) \(\Rightarrow B'\left(4;2\right)\)

\(\Rightarrow\overrightarrow{A'B'}=\left(-1;-2\right)\Rightarrow A'B'=\sqrt{\left(-1\right)^2+\left(-2\right)^2}=\sqrt{5}\)

2.

Gọi A' và B' lần lượt là ảnh của A và B qua phép tịnh tiến \(\overrightarrow{u}\Rightarrow\) đường thẳng A'B' chính là đường thẳng (d2)

\(\left\{{}\begin{matrix}x_{A'}=x_A+0=-4\\y_{A'}=y_A+3=3\end{matrix}\right.\) \(\Rightarrow A'\left(-4;3\right)\)

\(\left\{{}\begin{matrix}x_{B'}=x_B+0=0\\y_{B'}=y_B+3=5\end{matrix}\right.\) \(\Rightarrow B'\left(0;5\right)\)

\(\Rightarrow\overrightarrow{A'B'}=\left(4;2\right)=2\left(2;1\right)\Rightarrow\) đường thẳng (d2) nhận \(\left(1;-2\right)\) là 1 vtpt

Phương trình d2:

\(1\left(x-0\right)-2\left(y-5\right)=0\Leftrightarrow x-2y+10=0\)

30 tháng 9 2020

tên bạn hay lắm like+ theo dõi cho bạn nè