Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham khảo nha:
Lấy pt (1) từ đi pt (2) vế theo vế ta được:
\(\frac{y}{x}-\frac{x}{y}=2,1\)
\(\Leftrightarrow y^2-x^2=2,1xy\)
\(\Leftrightarrow x^2+2,1xy-y^2=0\)
\(\Leftrightarrow\frac{1}{10}\left(5x-2y\right)\left(2x+5y\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{2y}{5}\\x=-\frac{5y}{2}\end{matrix}\right.\)
Thay vào pt đầu là được
\(\Leftrightarrow\left\{{}\begin{matrix}-2x+5y=-5\\2x+3y=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}8y=0\\2x+3y=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{5}{2}\\y=0\end{matrix}\right.\)
Điều kiện: \(20-x^2\ge0\Leftrightarrow-2\sqrt{5}\le x\le2\sqrt{5}\)
Với \(xy-10< 0\)thì ta có
\(\left\{\begin{matrix}xy-10=x^2-20\left(1\right)\\xy=5+y^2\left(2\right)\end{matrix}\right.\)
Lấy (1) + (2) ta được
\(x^2+y^2-2xy=5\)
\(\Leftrightarrow\left(x-y\right)^2=5\)
\(\Leftrightarrow\left[\begin{matrix}x-y=-\sqrt{5}\\x-y=\sqrt{5}\end{matrix}\right.\)
Tới đây thì đơn giản rồi nhé. B làm phần còn lại nhé
Trường hợp còn lại thì tương tự
a)
\(\left\{{}\begin{matrix}x+y+xy=7\\x^2+y^2+xy=13\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x+y+xy=7\\\left(x+y\right)^2-xy=13\end{matrix}\right.\)
Đặt x+y = S, xy = P,ta có hệ
\(\left\{{}\begin{matrix}S+P=17\\S^2-P=13\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}P=S-17\\S^2-S+4=0\end{matrix}\right.\)
\(S^2-S+4>0\)
=> Hệ phương trình vô nghiệm
Bài 2:
a: \(\Leftrightarrow\left\{{}\begin{matrix}2-x+y-3x-3y=5\\3x-3y+5x+5y=-2\end{matrix}\right.\)
=>-4x-2y=3 và 8x+2y=-2
=>x=1/4; y=-2
b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{y-1}=1\\\dfrac{1}{x-2}+\dfrac{1}{y-1}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y-1=5\\\dfrac{1}{x-2}=1-\dfrac{1}{5}=\dfrac{4}{5}\end{matrix}\right.\)
=>y=6 và x-2=5/4
=>x=13/4; y=6
c: =>x+y=24 và 3x+y=78
=>-2x=-54 và x+y=24
=>x=27; y=-3
d: \(\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{x-1}-6\sqrt{y+2}=4\\2\sqrt{x-1}+5\sqrt{y+2}=15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-11\sqrt{y+2}=-11\\\sqrt{x-1}=2+3\cdot1=5\end{matrix}\right.\)
=>y+2=1 và x-1=25
=>x=26; y=-1
Lời giải:
Nếu \(x=0\Rightarrow y=0\)
Nếu \(x\neq 0\). Đặt \(y=tx(t>0\) do $x,y$ cùng dấu)
Nhân chéo PT(1) với PT(2) ta thu được:
\(20y^2(x^2-y^2)=3x^2(x^2+y^2)\)
\(\Leftrightarrow 20t^2x^2(x^2-t^2x^2)=3x^2(x^2+t^2x^2)\)
\(\Leftrightarrow x^4[20t^2(1-t^2)-3(1+t^2)]=0\)
\(\Leftrightarrow 20t^2-20t^4-3-3t^2=0\) (do \(x\neq 0\) )
\(\Leftrightarrow 20t^4-17t^2+3=0\)
\(\Rightarrow \left[\begin{matrix} t=\sqrt{\frac{3}{5}}\\ t=\frac{1}{2}\end{matrix}\right.\)
Nếu \(t=\sqrt{\frac{3}{5}}\Rightarrow y=\sqrt{\frac{3}{5}}x\). Thay vào PT(1):
\(2\sqrt{\frac{3}{5}}x(x^2-\frac{3}{5}x^2)=3x\)
\(\Rightarrow x=\pm \frac{\sqrt{5\sqrt{15}}}{2}\Rightarrow y=\pm \sqrt{\frac{3}{5}}.\frac{\sqrt{5\sqrt{15}}}{2}\) (tương ứng)
Nếu \(t=\frac{1}{2}\Rightarrow y=\frac{x}{2}\). Thay vào PT(1):
\(2.\frac{1}{2}x(x^2-\frac{1}{4}x^2)=3x\)
\(\Rightarrow x=\pm 2\Rightarrow y=\pm 1\) (tương ứng)
Vậy........
Lời giải:
Từ $0,75x-10y=7,5\Rightarrow y=\frac{3}{40}x-\frac{3}{4}$. Thay vào PT $(2)$ ta có:
$-0,5x+x(\frac{3}{40}x-\frac{3}{4})=5$
$\Leftrightarrow -\frac{5}{4}x+\frac{3}{40}x^2=5$
$\Leftrightarrow 3x^2-50x-200=0$
$\Leftrightarrow (x-20)(3x+10)=0$
$\Rightarrow x=20$ hoặc $x=-\frac{10}{3}$
Nếu $x=20$ thì $y=\frac{3}{40}x-\frac{3}{4}=\frac{3}{4}$
Nếu $x=-\frac{10}{3}$ thì $y=\frac{3}{40}x-\frac{3}{4}=-1$
Vậy..........