Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có : M=2.(a^3 +b^3) -3.(a^2 + b^2)
<=>M=2.(a+b)(a^2 -ab +b^2) - 3(a^2 +3b^2)
<=>M=2(a^2 -ab +b^2) -3(a^2 +b^2) vì a+b=1(gt)
<=>M=-(a^2 +b^2 +2ab)
<=>M=-(a+b)^2
<=>M=-1 (vì a+b=1)
Thực ra theo em nghĩ bài này là dùng UCT!
Dự đoán đẳng thức xảy ra khi \(a=b=c=2\)
Chọn m, n để \(a^3\ge ma^2+n\). Ta thử thay a = 2 vào: \(8=4m+n\Rightarrow n=8-4m\)
Vậy ta chọn m sao cho \(a^3\ge m\left(a-2\right)\left(a+2\right)+8\)
\(\Leftrightarrow\left(a-2\right)\left(a^2+2a+4\right)=\left(a-2\right)m\left(a+2\right)\)
\(\Leftrightarrow\left(a-2\right)\left(a^2+2a+4-m\left(a+2\right)\right)=0\)
Chọn m để : \(a^2+2a+4=m\left(a+2\right)\)
Thay a = 2 vào:\(12=m.4\Rightarrow m=3\Rightarrow n=8-4m=-4\). Vậy BĐT phụ cần tìm là:
\(a^3\ge3a^2-4\Leftrightarrow\left(a+1\right)\left(a-2\right)^2\ge0\)
Khúc sau đơn giản rồi:D
Nè bạn :)
Ta có : \(2ab+2ac\ge4a\sqrt{bc}\) (Cauchy_)
\(\Rightarrow a^2+2ab+2ac+4bc\ge a^2+4a\sqrt{bc}+4bc\)
\(\Rightarrow a^2+2ab+2ac+4bc\ge\left(a+2\sqrt{bc}\right)^2\)
\(\Rightarrow\sqrt{\left(a+2b\right)\left(a+2c\right)}\ge a+2\sqrt{bc}\)\(\left(1\right)\)
Tương tự : \(\sqrt{\left(b+2a\right)\left(b+2c\right)}\ge b+2\sqrt{ac}\)\(\left(2\right)\)
\(\sqrt{\left(c+2a\right)\left(c+2b\right)}\ge c+2\sqrt{ab}\)\(\left(3\right)\)
Từ \(\left(1\right);\left(2\right);\left(3\right)\)\(\Rightarrow\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2\ge3\)
\(\Rightarrow\sqrt{a}+\sqrt{b}+\sqrt{c}\ge\sqrt{3}\)
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)
Thay vào biểu thức M ta được M = \(\frac{\sqrt{3}}{3}\)
\(A=\frac{1}{\left(a+b\right)^3}.\frac{a^3+b^3}{\left(ab\right)^3}+\frac{3}{\left(a+b\right)^4}.\frac{a^2+b^2}{\left(ab\right)^2}+\frac{6}{\left(a+b\right)^5}.\frac{a+b}{ab}\)
\(=\frac{1}{\left(a+b\right)^3}.\frac{a^3+b^3}{1^3}+\frac{3}{\left(a+b\right)^4}.\frac{a^2+b^2}{1^2}+\frac{6}{\left(a+b\right)^5}.\frac{a+b}{1}\)
\(=\frac{a^2-ab+b^2}{\left(a+b\right)^2}+\frac{3\left(a^2+b^2\right)}{\left(a+b\right)^4}+\frac{6}{\left(a+b\right)^4}\)\(=\frac{\left(a^3+b^3\right)\left(a+b\right)+3a^2+3b^2+6}{\left(a+b\right)^4}\)
\(=\frac{a^4+a^3b+ab^3+b^4+3a^2+3b^2+6}{a^4+4a^3b+6a^2b^2+4ab^3+b^4}\)\(=\frac{a^4+a^2.1+1.b^2+b^4+3a^2+3b^2+6}{a^4+4a^2.1+6.1^2+4b^2.1+b^4}\)
\(=\frac{a^4+4a^2+4b^2+b^4+6}{a^4+4a^2+6+4b^2+b^4}=1\)
1. Ta thấy:
\(\frac{(a-b)^3}{(\sqrt{a}-\sqrt{b})^3}-b\sqrt{b}+2a\sqrt{a}=\frac{(\sqrt{a}-\sqrt{b})^3(\sqrt{a}+\sqrt{b})^3}{(\sqrt{a}-\sqrt{b})^3}-b\sqrt{b}+2a\sqrt{a}\)
\(=(\sqrt{a}+\sqrt{b})^3-b\sqrt{b}+2a\sqrt{a}=a\sqrt{a}+b\sqrt{b}+3\sqrt{ab}(\sqrt{a}+\sqrt{b})-b\sqrt{b}+2a\sqrt{a}\)
\(=3a\sqrt{a}+3\sqrt{ab}(\sqrt{a}+\sqrt{b})=3\sqrt{a}(a+\sqrt{ab}+b)\)
$a\sqrt{a}-b\sqrt{b}=(\sqrt{a}-\sqrt{b})(a+\sqrt{ab}+b)$
\(\frac{\frac{(a-b)^3}{(\sqrt{a}-\sqrt{b})^3}-b\sqrt{b}+2a\sqrt{a}}{a\sqrt{a}-b\sqrt{b}}=\frac{3\sqrt{a}}{\sqrt{a}-\sqrt{b}}(1)\)
\(\frac{3a+3\sqrt{ab}}{b-a}=\frac{3\sqrt{a}(\sqrt{a}+\sqrt{b})}{(\sqrt{b}-\sqrt{a})(\sqrt{b}+\sqrt{a})}=\frac{-3\sqrt{a}}{\sqrt{a}-\sqrt{b}}(2)\)
Từ $(1);(2)$ ta có đpcm.
Câu 2:
Điều kiện đã cho tương đương với:
$\frac{a-b}{a(a+b)}+\frac{a+b}{a(a-b)}=\frac{3a-b}{(a-b)(a+b)}$
$\Leftrightarrow \frac{(a-b)^2}{a(a+b)(a-b)}+\frac{(a+b)^2}{a(a-b)(a+b)}=\frac{a(3a-b)}{a(a-b)(a+b)}$
$\Leftrightarrow (a-b)^2+(a+b)^2=a(3a-b)$
$\Leftrightarrow 2a^2+2b^2=3a^2-ab$
$\Leftrightarrow a^2-ab-2b^2=0$
$\Leftrightarrow (a+b)(a-2b)=0$
$\Leftrightarrow a=-b$ hoặc $a=2b$
Nếu $a=-b$ thì $|a|=|b|$ (trái giả thiết). Do đó $a=2b$
Khi đó:
$P=\frac{(2b)^3+2(2b)^2.b+3b^3}{2(2b)^3+2b.b^2+b^3}=\frac{19b^3}{19b^3}=1$
Bài 3: \(3\left(\sqrt{2x^2+1}-1\right)=x\left(1+3x+8\sqrt{2x^2+1}\right)\)
\(\Leftrightarrow\left(3-8x\right)\sqrt{2x^2+1}=3x^2+x+3\)
\(\Rightarrow\left(3-8x\right)^2\left(2x^2+1\right)=\left(3x^2+x+3\right)^2\)
\(\Leftrightarrow119x^4-102x^3+63x^2-54x=0\)
\(\Leftrightarrow x\left(7x-6\right)\left(17x^2+9\right)=0\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{6}{7}\end{cases}}\)
Thử lại, ta nhận được \(x=0\)là nghiệm duy nhất của phương trình
Cảm ơn rất nhiều
\(\left(a-2\right)^2-\left(b-1\right)^3=1-3a-\left(-2+3b\right)\)
\(\Leftrightarrow\left(a-b-1\right)\left[\left(a-2\right)^2+\left(a-2\right)\left(b-1\right)+\left(b-1\right)^2\right]=-3\left(a-b-1\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}a-b-1=0\\\left(a-2\right)^2+\left(a-2\right)\left(b-1\right)+\left(b-1\right)^2=-3\left(vn\right)\end{matrix}\right.\)
\(\Rightarrow a-b=1\)
\(\Rightarrow\left(a-b\right)^{2020}=1\)