Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
$\sin18=\cos72=2 \cos^{2}36-1=2(1- \sin^{2}18)^{2}-1
\Leftrightarrow 8 \sin^{4}18 -8 \sin^{2}18- \sin18+1=0
\Leftrightarrow ( \sin18-1)[8 \sin^{3}18+8 \sin^{2}18-1]=0 $
ht
Vì \(\pi< \alpha< \dfrac{3\pi}{2}\) \(\Rightarrow\dfrac{\pi}{2}< \dfrac{\alpha}{2}< \dfrac{3\pi}{4}\)
\(\Rightarrow sin\dfrac{\alpha}{2}>0;cos\dfrac{\alpha}{2}< 0\)
\(\pi< \alpha< \dfrac{3\pi}{2}\Rightarrow cos\alpha< 0\)
\(\Rightarrow cos\alpha=-\sqrt{1-sin^2\alpha}=-\dfrac{3}{5}\)
Có \(sin^2\dfrac{\alpha}{2}=\dfrac{1-cosa}{2}=\dfrac{4}{5}\Rightarrow sin\dfrac{\alpha}{2}=\sqrt{\dfrac{4}{5}}=\dfrac{2\sqrt{5}}{5}\)
\(cos^2\dfrac{\alpha}{2}=\dfrac{1+cosa}{2}=\dfrac{1}{5}\Rightarrow cos\dfrac{\alpha}{2}=-\sqrt{\dfrac{1}{5}}=-\dfrac{\sqrt{5}}{5}\)
\(tan\dfrac{\alpha}{2}=\dfrac{sin\dfrac{\alpha}{2}}{cos\dfrac{\alpha}{2}}=-2\)
\(cot\dfrac{\alpha}{2}=-\dfrac{1}{2}\)
19.
\(f\left(x\right)=x^2\left(3-2x\right)=x.x.\left(3-2x\right)\le\left(\dfrac{x+x+3-2x}{3}\right)^3=1\)
\(\Rightarrow\max\limits_{\left[0;\dfrac{3}{2}\right]}f\left(x\right)=1\)
20.
\(f\left(x\right)< 0;\forall x\in R\Leftrightarrow\left\{{}\begin{matrix}a< 0\\\Delta< 0\end{matrix}\right.\)
21.
A là đáp án đúng, do đa thức \(f\left(x\right)=-2x^2+3x-4\) có:
\(\left\{{}\begin{matrix}a=-2< 0\\\Delta=3^2-4.\left(-2\right).\left(-4\right)=-23< 0\end{matrix}\right.\)
22.
ĐKXĐ: \(4-x^2\le0\Rightarrow\left(2-x\right)\left(2+x\right)\le0\)
\(\Rightarrow-2\le x\le2\Rightarrow D=\left[-2;2\right]\)
23.
\(f\left(x\right)>0;\forall x\Leftrightarrow\left\{{}\begin{matrix}a=1>0\\\Delta'=\left(2m-3\right)^2-\left(4m-3\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow4m^2-16m+12< 0\)
\(\Rightarrow1< m< 3\)
\(\Leftrightarrow a\sqrt{a}+b\sqrt{b}\ge\left(\sqrt{a}+\sqrt{b}\right)^2\)
\(\Leftrightarrow\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b-\sqrt{a}-\sqrt{b}\right)>=0\)(đúng)
Mình trình bày cho dễ hiểu nha
\(sina-\sqrt{3}cosa\)
\(=2\cdot\left(\frac{1}{2}sina-\frac{\sqrt{3}}{2}cosa\right)\)
\(=2\cdot\left(sinacos\frac{pi}{6}-cosasin\frac{pi}{6}\right)\)
\(=2\cdot sin\left(a-\frac{pi}{6}\right)\)
Ta có\(-1\le sin\left(a-\frac{pi}{6}\right)\le1\)
\(-2\le sin\left(a-\frac{pi}{6}\right)\le2\)
Vậy Min=-2
Max=2
\(\left(3x-3\right).\left(5x-21x\right)+\left(7x+4\right).\left(9x-5\right)=44\)
\(=3x.\left(5x-21x\right)-3.\left(5x-21x\right)+7x.\left(9x-5\right)+4.\left(9x-5\right)=44\)
\(=3x.5x-3x.21x-3.5x+3.21x+7x.9x-7x.5+4.9x-4.5=44\)
\(=15x^2-63x^2-15x+63x^2+63x^2-35x+36x-20=44\)
\(=78x^2-14x-20=44\)
Sao cái đề sao sao ấy
Câu 1:
a: =(1+2-3-4)+(5+6-7-8)+...+(2013+2014-2015-2016)
=(-4)+(-4)+...+(-4)
=-4x504=-2016
b: \(B=\dfrac{3}{4}\cdot\dfrac{8}{9}\cdot...\cdot\dfrac{195}{196}=\dfrac{1\cdot3\cdot2\cdot4\cdot...\cdot13\cdot15}{2\cdot3\cdot...\cdot14\cdot2\cdot3\cdot...\cdot14}=\dfrac{15}{14\cdot2}=\dfrac{15}{28}\)
\(\left(x^2-2mx+m-1\right)\left(x^2-3x+2m\right)=0\)(1)
\(\Leftrightarrow\hept{\begin{cases}x^2-2mx+m-1=0,\left(2\right)\\x^2-3x+2m=0,\left(3\right)\end{cases}}\)
Để phương trình (1) có bốn nghiệm phân biệt thì phương trình (2) và (3) đều có hai nghiệm phân biệt, trong đó không có nghiệm nào trùng nhau.
(2) có hai nghiệm phân biệt khi:
\(\Delta_2'=m^2-\left(m-1\right)=m^2-m+1>0\)(đúng với mọi \(m\))
(3) có hai nghiệm phân biệt khi:
\(\Delta_3=3^2-4.2m=9-8m>0\Leftrightarrow m< \frac{9}{8}\)
GIả sử phương trình (2) và (3) có nghiệm chung là \(x=x_0\)
Khi đó ta có: \(x_0^2-2mx_0+m-1=x_0^2-3x_0+2m\)
\(\Leftrightarrow x_0\left(2m-3\right)=-1-m\)
- \(2m-3=0\Leftrightarrow m=\frac{3}{2}\)(vô lí)
- \(2m-3\ne0\Leftrightarrow m\ne\frac{3}{2}\)
\(x_0=\frac{-m-1}{2m-3}\)
Thế vào phương trình (3) ta được:
\(\left(\frac{m+1}{2m-3}\right)^2+\frac{3\left(m+1\right)}{2m-3}+2m=0\)
\(\Leftrightarrow m=1\).
Vậy \(m< \frac{9}{8}\)và \(m\ne1\)thì thỏa mãn ycbt.