K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2022
3 tháng 8 2015

A B C M N H

a) Ta có: góc MNC = góc BAC = 900

=> MN // BC  (2 góc đồng vị bằng nhau)    (đpcm)

b) Ta có:  AC // HM  (gt) 

Và AC vuông góc với AB  (góc BAC = 900)

=> MH vuông góc với AB    (đpcm)

3 tháng 8 2015

câu a) MN // Ab mới đúng bạn nhé

23 tháng 10 2019

bài 1 . c) dễ dàng chứng minh tam giác DMA = tam giác DME (2 cạnh góc vuông)  .Ta đc DA=DE , mà AD =BC nên BC = DC 

 Suy ra : tam giác AME = tam giác NBC ( cạnh huyền-cạnh góc vuông )  .( 1) 

         Tam giác MAN và tam giác EMC có : AN song song với MC nên góc EMC = góc MAN  mà AN=MC(ANCM là hbh) , ME=MA nên 2 tam giác này bằng nhau (c.g.c) ;Suy ra góc M= góc e suy ra EC// MN (2) 

Từ (1) và (2) suy ra là htc 

23 tháng 10 2019

caau1 d) dựa vào tính chất 2 đường chéo = nhau song chứng minh từ từ là ra bởi đã có góc E=C= 90 độ

30 tháng 8 2015

mk mới lên lớp 8 nên ko bít làm nhìn mún lòi mắt

28 tháng 7 2018

#naruto Có ai hỏi bạn đâu mà trả lời

9 tháng 12 2018

giups mình với nhé

Mọi người giúp mình với, mình đang cần gấp 1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:a) Tam giác ABD cânb) BD vuông góc với DE.2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D; ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.Chứng minh HC⊥CQ3. Cho tam giác ABC...
Đọc tiếp

Mọi người giúp mình với, mình đang cần gấp 

1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:
a) Tam giác ABD cân
b) BD vuông góc với DE.
2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D; 
ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.
Chứng minh HC⊥CQ
3. Cho tam giác ABC vuông tại A (AB<AC), trên cạnh BC lấy N sao cho BN=NA, trên cạnh BC lấy M sao cho CM=CA. Tia phân giác góc ABC cắt AM tại E, tia phân giác góc ACB cắt AN tại D. Gọi O là giao của BE và CD, gọi H là giao của MD và NE. 
a) Tính góc MAN b) CHứng minh EODH là hình bình hành
c) Gọi K và I lần lượt là trung điểm của AH và MN. Chứng minh IEKD là hình vuông.
4. Cho hình vuông ABCD, E là điểm trên cạnh AB. Trên cùng một đường thẳng bờ là đường thẳng AB có chứa điểm D, dựng các hình vuông AEGH và BEFK. AK cắt BD tại S, AC cắt DE tại T. CHứng minh:
a) AF⊥BG tại M
b) Bốn điểm H, M, K, O thẳng hàng ( O là giao của BD và AC)
c) E, S, C thẳng hàng
d) B, T, H thẳng hàng

5. Cho tam giác ABC nhọn, vẽ ra phía ngoài của tam giác ABC hai hình vuông ABMN và ACEF. Gọi I và K là tâm hình vuông ABMN và ACEF. P,Q là trung điểm của NF và BC. Chứng minh S ABC=S NAF

0