Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
txđ D=R
y'=-3x2+6x+3m
y' là tam thức bậc 2 nên y'=0 có tối đa 2 nghiệm
để hs nb/(0;\(+\infty\) ) thì y' \(\le\) 0 với mọi x \(\in\) (0;\(+\infty\) )
\(\Leftrightarrow\) -3x2 +6x+3m \(\le\) 0 với mọi x \(\in\) (0;\(+\infty\) )
\(\Leftrightarrow\) m\(\le\) x2 -2x với mọi x \(\in\) (0; \(+\infty\) )
xét hs g(x)=x2 -2x
g'(X) =2x-2
g'(x)=0 \(\Leftrightarrow\) x=1
vậy m \(\le\) -1
Lời giải:
Bài 16
Khai triển:
\(F(x)=\int \frac{(x-1)^3}{2x^2}dx=\int \frac{x^3-3x^2+3x-1}{2x^2}dx=\int \frac{x}{2}dx-\int\frac{3}{2}dx+\int\frac{3}{2x}dx-\int\frac{dx}{2x^2}\)
Cụ thể có:
\(\int \frac{x}{2}dx=\frac{x^2}{4};\int\frac{3}{2}dx=\frac{3x}{2};\int\frac{3dx}{2x}=\frac{3}{2}\ln|x|;\int\frac{dx}{2x^2}=-\frac{1}{2x}\)
Do đó \(F(x)=\frac{x^2}{4}-\frac{3x}{2}+\frac{3\ln|x|}{2}+\frac{1}{2x}+c\)
Phương án D.
Bài 18:
Vì \(\int f(x)dx=\sin 2x\cos 2x\Rightarrow f(x)=(\sin 2x\cos 2x)'\)
\(\Leftrightarrow f(x)=(\frac{\sin 4x}{2})'=2\cos 4x\)
(không có đáp án đúng?)
Câu 36
Đặt \(\left\{\begin{matrix} u=\ln (\ln x)\\ dv=\frac{dx}{x}\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=\frac{1}{x\ln x}dx\\ v=\int\frac{dx}{x}=\ln x\end{matrix}\right.\)
Khi đó \(I=\ln x\ln(\ln x)-\int\ln x\frac{1}{x\ln x}dx=\ln x\ln(\ lnx)-\int\frac{dx}{x}=\ln x\ln (\ln x)-\ln x+c\)
Đáp án C
21. d[O,(P)]max => OA vuông góc (P) => n(P) =Vecto OA=(2; -1; 1)
=> (P):2x - y +z - 6 = 0. ĐA: D
22. D(x; 0; 0). AD = BC <=> (x-3)2 +16 = 25 => x = 0 v x = 6. ĐA: C
34. ĐA: A.
37. M --->Ox: A(3; 0; 0)
Oy: B(0; 1; 0)
Oz: C(0; 0;2)
Pt mp: x\3 + y\1+ z\2 = 1 <==> 2x + 6y + 3z - 6 = 0. ĐA: B
nhờ người ta giải mà cười hihi
em thì bó tay chấm chữ com vào ăn
TXĐ: D=R
\(9^{x^2+x-1}-10.3^{x^2+x-2}+1=0\)
\(\Leftrightarrow9^{x^2+x-1}-10.\frac{3^{x^2+x-1}}{3}+1=0\)
Đặt t = \(3^{x^2+x-1}\) (t>0)
\(\Leftrightarrow t^2-\frac{10}{3}t+1=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}t=3\\t=\frac{1}{3}\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}3^{x^2+x-1}=3\\3^{x^2+x-1}=\frac{1}{3}\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x^2+x-1=1\\x^2+x-1=\frac{1}{3}\end{array}\right.\)
Hướng dẫn giải không có sử dụng BĐT vector đâu bạn ạ. Không có dòng nào ghi như kiểu của bạn cả.
-Nếu \(\overrightarrow{a}=(x,y,z);\overrightarrow{b}=(m,n,p)\Rightarrow \overrightarrow{a}\pm \overrightarrow{b}=(x\pm m,y\pm n,z\pm p)\)
-Nếu vector \(\overrightarrow {a}\) có tọa độ \((x,y,z)\) thì giá trị của nó là \(|\overrightarrow {a}|=\sqrt{x^2+y^2+z^2}\) .
Trong hướng dẫn, người ta viết cụ thể tọa độ của \(\overrightarrow {a}+\overrightarrow{b}\) và \(\overrightarrow{a}-\overrightarrow{c}\) (chứ không phải \(\overrightarrow{a}\) riêng \(\overrightarrow{b}\) ) rồi biểu diễn riêng rẽ giá trị của nó như hai bước (gạch đầu dòng trên kia)
Khi đó, bài toán trở về tìm min của phương trình đại số thuần túy và tiếp tục giải như hướng dẫn.
@Đỗ Đại Học : không phải BĐT đấy đâu. Đó là BĐT Mincopski
Dạng của nó ntn:
Nếu \(a,b,c,d\in\mathbb{R}\) thì \(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\geq \sqrt{(a+c)^2+(b+d)^2}\)
Câu 3:
+)Vì BC vuông góc với cả SA và AB nên BC vuông góc với (SAB)
\(\Rightarrow\left(\widehat{SC,\left(SAB\right)}\right)=\widehat{BSC}=30^o\)
Ta có \(SB=\frac{BC}{tan\widehat{BSC}}=a\sqrt{3}\) , \(SA=\sqrt{SB^2-AB^2}=a\sqrt{2}\)
+)Sử dụng phương pháp tọa độ hóa
Xét hệ trục tọa độ Axyz, A là gốc tọa độ, B,D,S lầ lượt nằm trên các tia Ax, Ay, Az
\(\Rightarrow B\left(a;0;0\right),C\left(a;a;0\right),D\left(0;a;0\right),S\left(0;0;a\sqrt{2}\right)\)
\(\Rightarrow E\left(\frac{a}{2};\frac{a}{2};0\right),F\left(0;\frac{a}{2};\frac{a}{\sqrt{2}}\right)\)
Như vậy là biết tọa độ 4 điểm D,E,F,C ta có thể viết phương trình 2 đường thẳng DE, FC và tính khoảng cách theo công thức sau
\(d\left(DE;FC\right)=\frac{\left|\left[\overrightarrow{DE.}\overrightarrow{FC}\right]\overrightarrow{EC}\right|}{\left|\overrightarrow{DE.}\overrightarrow{FC}\right|}\) (không nhớ rõ lắm)
Câu 5:
Gọi I là trung điểm BC, dễ thấy BC vuông góc với (AIA') (vì BC vuông góc với IA,IA')
Từ I kẻ IH vuông góc với AA' tại H
suy ra IH là đường nố vuông góc chung của BC và AA' hay IH chính là khoảng cách của 2 đường thẳng BC và AA'
Tính được IA=a và IA'=\(a\sqrt{3}\)
Lại có tam giác AIA' vuông tại I, có đường cao IH nên ta dùng hệ thức:
\(\frac{1}{IH^2}=\frac{1}{AI^2}+\frac{1}{A'I^2}\Rightarrow IH=\frac{a\sqrt{3}}{2}\)