K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2019

Em nghĩ là như vầy ạ:

\(B=\frac{4-x+x+1}{\left(4-x\right)\left(x+1\right)}=\frac{5}{-x^2+3x+4}\) (-1 < x < 4)

Ta có: \(-x^2+3x+4=-\left(x-\frac{3}{2}\right)^2+\frac{25}{4}\le\frac{25}{4}\)

Do đó: \(B=\frac{5}{-x^2+3x+4}\ge\frac{5}{\frac{25}{4}}=\frac{20}{25}=\frac{4}{5}\)

Vậy min B = 4/5 khi x = 3/2 (TMĐK)

5 tháng 5 2019

1/(x + 1) + 1/(4 - x) ≥ (1 + 1)^2/(x + 1 + 4 - x) = 4/5

10 tháng 9 2015

Bài 1

(2x + 9)2 > 0

3(2x + 9)2 > 0

3(2x + 9)2 - 1 > - 1

Vậy GTNN của biểu thức là - 1

Bài 2

(x - a)(x + a) = x2 - 169

x2 - a2 = x2 - 169

a2 = 169

mà a < 0

nên a = - 13

6 tháng 4 2017

I6-lx+2II>=0 => 5x-9>=0 =>5x>=9 => x>=1.8

=>x+2 >0

=> lx+2l=x+2

=>l6-lx+2ll= l6-(x+2)l = l4-xl

=>l4-xl= 5x-9

(+) TH1: 4-x=5x-9

=>6x=13=>x=13/6(t/m)

(+) TH2: -(x-4)=5x-9

=>x-4=5x-9

=>4x=5

=>x=5/4 ( loại vì 5/4 <2)

Vậy x = 13/6

6 tháng 4 2017

Nhưng như t nói ở trên, 13/6 không thỏa mãn điều kiện x >= 4 mà nhỉ :<

30 tháng 12 2019

Thôi làm thế này đi:3

\(A=-\frac{2xy}{1+xy}=-\frac{2\left(1+xy\right)+2}{1+xy}=\frac{2}{1+xy}-2\)

Áp dụng BĐT Cosi ta có:

\(xy\le\frac{x^2+y^2}{2}=\frac{1}{2}\)

\(\Rightarrow A\ge\frac{2}{1+\frac{1}{2}}-2=-\frac{2}{3}\)

Dấu "=" xảy ra khi \(\Leftrightarrow x=y=\frac{\sqrt{2}}{2}\)

vậy GTNNA = \(-\frac{2}{3}\Leftrightarrow x=y=\frac{\sqrt{2}}{2}\)

30 tháng 12 2019

\(A=-\frac{2xy}{1+xy}=-2xy-2\)

Áp dụng BĐT Cosi ta có:

\(2xy\le x^2+y^2=1\)dấu "=" xảy ra khi:

\(\Leftrightarrow\hept{\begin{cases}x^2=y^2\\x^2+y^2=1\end{cases}}\Leftrightarrow x=y=\frac{\sqrt{2}}{2}\) (thỏa mãn ĐKXĐ vs x,y > 0 )

\(\Rightarrow A\ge-1-2=-3\)

dấu "=" xảy ra khi:

\(\Leftrightarrow x=y=\frac{\sqrt{2}}{2}\)(thỏa mãn ĐKXĐ vs x,y > 0 )

vậy GTNN \(A=-3\Leftrightarrow x=y=\frac{\sqrt{2}}{2}\)