\(2sinx+tanx>3x\) \(\forall x\in(...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
5 tháng 7 2017

Lời giải:

BPT cần chứng minh tương đương \(2\sin x+\tan x-3x>0\)

Xét hàm \(f(x)=2\sin x+\tan x-3x\rightarrow f'(x)=2\cos x+\frac{1}{\cos^2 x}-3\)

Đặt \(\cos x=t\Rightarrow t\in (0;1)\)

Ta có \(f'(x)=2t+\frac{1}{t^2}-3=\frac{(t-1)(2t^2-t-1)}{t^2}>0\forall t\in (0;1)\)

Do đó \(f(x)\) luôn đồng biến với mọi \(x\in \left (0;\frac{\pi}{2}\right)\)

\(\Rightarrow f(x)>f(0)=0\). Ta có đpcm.

10 tháng 7 2017

cảm ơn bạn nhiều

26 tháng 5 2017

VD1 : tanx≤4xπ∀x∈[0;π4]tanx≤4xπ∀x∈[0;π4]

Xét f(x)=tanx−4xπf(x)=tanx−4xπ

f′(x)=tan2x+1−4πf′(x)=tan2x+1−4π

f′′(x)=2tanx.1cos2x>0∀x∈[0;π4]f″(x)=2tanx.1cos2x>0∀x∈[0;π4]

Suy ra pt f′(x)=0f′(x)=0 có không quá 1 nghiệm thuộc [0;π4][0;π4]

Do đó f(x) đạt giá trị lớn nhất tại cực biên là khi x=0x=0 hoặc x=π4x=π4.

thay vào ta có max[0;π/4]f(x)=0max[0;π/4]f(x)=0

f(x)≤0⇔tanx≤4xπ∀x∈[0;π4]

31 tháng 3 2017

a) Xét hàm số y = f(x) = tanx – x với x ∈ [0 ; ).

Ta có : y’ = - 1 ≥ 0, x ∈ [0 ; ); y’ = 0 ⇔ x = 0. Vậy hàm số luôn đồng biến trên [0 ; ).

Từ đó ∀x ∈ (0 ; ) thì f(x) > f(0) ⇔ tanx – x > tan0 – 0 = 0 hay tanx > x.

b) Xét hàm số y = g(x) = tanx – x - . với x ∈ [0 ; ).

Ta có : y’ = - 1 - x2 = 1 + tan2x - 1 - x2 = tan2x - x2

= (tanx - x)(tanx + x), ∀x ∈ [0 ; ).

Vì ∀x ∈ [0 ; ) nên tanx + x ≥ 0 và tanx - x >0 (theo câu a).

Do đó y' ≥ 0, ∀x ∈ [0 ; ).

Dễ thấy y' = 0 ⇔ x = 0. Vậy hàm số luôn đồng biến trên [0 ; ). Từ đó : ∀x ∈ [0 ; ) thì g(x) > g(0) ⇔ tanx – x - > tan0 - 0 - 0 = 0 hay tanx > x + .

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm sốỨng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

24 tháng 5 2017

g'(x) là đạo hàm của g(x) phải không bạn? Xét đạo hàm tới 2 lần lận à?

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

24 tháng 5 2017

a) Xét \(n>2\), ta có \(I_n=\int\limits^{\dfrac{\pi}{2}}_0\sin^{n-1}x.\sin xdx\)

Nguyên hàm, tích phân và ứng dụng

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số