Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Gọi vận tốc của ô tô khi đi từ A đến B là x (km/h) (x > 0)
Thời gian ô tô đi từ A đến B là: 156/x (giờ)
Vận tốc của ô tô lúc về là: x + 32 (km) .
Vậy vận tốc của ô tô lúc đi từ A đến B là 48km/h
Gọi vận tốc của người đi xe đạp lúc đầu là x(x>0)
Thời gian dự định đi hết quãng đường AB là : \(\frac{30}{x}\left(h\right)\)
Thời gian người đó đi hết nửa quãng đường đầu là : \(\frac{15}{x}\left(h\right)\)
Thời gian người đó đi hết nửa quãng đường sau là : \(\frac{15}{x+2}\left(h\right)\)
15 phút=\(\frac{1}{4}\)h Ta có:
\(\frac{30}{x}=\frac{15}{x}+\frac{1}{4}+\frac{15}{x+2}\)
\(\Leftrightarrow\frac{15}{x}-\frac{15}{x+2}=\frac{1}{4}\)
\(\Leftrightarrow\frac{1}{x}-\frac{1}{x+2}=\frac{1}{60}\)
\(\Leftrightarrow\frac{2}{x\left(x+2\right)}=\frac{1}{60}\)
\(\Leftrightarrow x\left(x+2\right)=120\)
\(\Leftrightarrow\orbr{\begin{cases}x=-12\\x=10\end{cases}\Rightarrow x=10}\)
Để giải hệ phương trình theo phương pháp thế, ta cần tìm ra 2 biến là vận tốc dự định (v1) và vận tốc tăng thêm (v2) sau khi nghỉ 30 phút.
Quãng đường đi đầu tiên: 120km / 2 = 60kmThời gian đi đầu tiên: 60km / v1 = t1Quãng đường đi thứ hai: 120km - 60km = 60kmThời gian đi thứ hai: 60km / (v1 + 20km/h) = t2Ta có 2 phương trình:
t1 + t2 + 0.5 = 8 (giờ) (với thời gian nghỉ là 30 phút)v1 * t1 + (v1 + 20km/h) * t2 = 120kmTa có thể giải hệ phương trình bằng cách sử dụng phương pháp thế, bằng cách giải một biến trong hai phương trình trên và thay vào phương trình còn lại.
Vận tốc dự định của ô tô là: v1 = 80 km/h.
gọi v là vận tốc bđ
thời gian dự đinh là 50/y
qđ còn lại sau khi đi dk 2h là 50-2v
thời gian đi qđ còn lại là 50-2v/(v+2)
từ giả thiết đề bài cho ta có pt
50-2v/(v+2)+2+30/60=50/v
bạn tự giải pt nha mk hướng dẫn tek thui