Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D E M F I K J
Trên tia đối của tia AM, lấy điểm I sao cho MI = MA. Khi đó ta có thể suy ra \(\Delta AMC=\Delta IMB\left(c-g-c\right)\)
\(\Rightarrow\widehat{MCA}=\widehat{MBI}\) hay BI // AC và BI = AC.
Gọi N là giao điểm của BI và AE. Do AE vuông góc với AC nên AE cũng vuông góc với BI. Vậy thì \(\widehat{AKI}=90^o\)
Ta thấy hai góc DAE và ABI có \(DA\perp AB;AE\perp BI\) nên \(\widehat{DAE}=\widehat{ABI}\)
Vậy thì \(\Delta DAE=\Delta ABI\left(c-g-c\right)\)
\(\Rightarrow\widehat{DEA}=\widehat{AIB}\)
Kéo dài NI cắt DE tại J, AI cắt DE tại F.
Xét tam giác vuông NEJ ta có \(\widehat{NJE}+\widehat{JEN}=90^o\)
Vậy nên \(\widehat{NJE}+\widehat{JIF}=90^o\Rightarrow\widehat{JFI}=90^o\)
Hay \(AM\perp DE.\)
A B C M D
A)XÉT \(\Delta BAM\)VÀ \(\Delta DMC\)CÓ
\(AM=DM\left(gt\right)\)
\(BM=CM\left(gt\right)\)
\(\widehat{AMB}=\widehat{DMC}\)(ĐỐI ĐỈNH)
\(\Rightarrow\Delta BAM=\Delta DMC\left(C-G-C\right)\)
\(\Rightarrow\widehat{BAM}=\widehat{CDM}\)(HAI GÓC TƯƠNG ỨNG)
HAI GÓC NÀY Ở VỊ TRÍ SO LE TRONG BẰNG NHAU
\(\Rightarrow AB//CD\)
B) TƯƠNG TỰ CÂU A TA CHỨNG MINH ĐƯỢC\(\Delta BMD=\Delta CMA\)THEO TRƯỜNG HỢP (C-G-C)
XÉT \(\Delta ABD\)VÀ \(\Delta DCA\)CÓ
AD LÀ CẠNH CHUNG
AB=DC(CMT)
BD=CA(CMT)
\(\Rightarrow\Delta ABD=\Delta DCA\left(C-C-C\right)\)
\(\Rightarrow\widehat{ACD}=\widehat{DBA}\)( HAI GÓC TƯƠNG ỨNG)
Lần lượt hạ DM, EN vuông góc AH tại M, N
ta có ˆADM=ˆCAH (góc có cạnh tương ứng vuông góc) (1)
AD =CA (2)
ˆDAM=ˆACHDAM^=ACH^ (góc có cạnh tương ứng vuông góc) (3)
từ (1, 2, 3)=>△ADM=△CAH△ADM=△CAH (g, c, g)
=>DM =AH (4)
c minh tương tự △AEN=△BAH△AEN=△BAH (g, c, g)
=>EN =AH (5)
từ (4, 5) =>DM =EN
mà DM //EN
DMEN là hình bình hành
=>MN đi qua trung điểm I của DE
hay AH đi qua trung điểm I của DE (đpcm)
x H y E D A B M C K
a, Để chứng tỏ DE = 2AM,ta tạo ra đoạn thẳng gấp đôi AM bằng cách lấy K trên tia đối của tia MA sao cho MK = MA,ta sẽ chứng minh AK = DE
Dễ thấy AC = BK, AC // BK . Xét \(\Delta ABK\)và \(\Delta DAE\), ta có :
AB = AD gt
BK = AE cùng bằng AC
\(\widehat{ABK}=\widehat{DAE}\)cùng bù với góc BAC
Do đó \(\Delta ABK=\Delta DAE(c.g.c)\)
\(\Rightarrow AK=DE\)hai cạnh tương ứng
Vậy AM = DE/2
b, Gọi H là giao điểm của MA và DE.Ta có \(\widehat{BAK}+\widehat{DAH}=90^0\)nên \(\widehat{D}+\widehat{DAH}=90^0\), do đó góc AHD = 900
câu a là c/m BC = OE phải hk pn?
đúng rồi bạn. mình ghi nhầm đề