K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2016

bài của bạn giống bài của Vũ Thị Thúy, mìh đã giải cho bạn ấy rồi đó. bn xem bài của bn ấy nhé

K ĐÚNG NHA

27 tháng 2 2016

Đặt a + b = ab = a : b = k

Ta có : a/b = k => a = kb

=> kb + b = kbb = k

=> (k + 1) b = kb2 = k

Từ kb2 = k

=> kb2 - k = 0

=> k (b2 - 1) = 0

=> k = 0      hoặc     b2 - 1 = 0

=> k = 0      hoặc     b = ±1

Trường hợp k = 0 => a = 0 

=> 0 + b = 0 => b = 0 (loại vì b ≠ 0)

Trường hợp b = 1

=> a + 1 = a . 1 => a + 1 = a  => 1 = 0 (vô lí)

=> b = 1 ko thỏa mãn

Trường hợp b = -1

=> a - 1 = a (-1) => a - 1 = -a => a - 1 +a = 0 => 2a - 1 = 0 => a = 1/2

13 tháng 12 2016

a) Giải:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk,c=dk\)

Ta có:
\(\frac{ab}{cd}=\frac{bkb}{dkd}=\frac{b^2}{d^2}\) (1)

\(\frac{a^2-b^2}{c^2-d^2}=\frac{\left(bk\right)^2-b^2}{\left(dk\right)^2-d^2}=\frac{b^2.k^2-b^2}{d^2.k^2-d^2}=\frac{b^2.\left(k^2-1\right)}{d^2.\left(k^2-1\right)}=\frac{b^2}{d^2}\) (2)

Từ (1) và (2) suy ra \(\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\left(đpcm\right)\)

b) Giải:
Để \(P\in Z\Rightarrow2x-3⋮x+1\)

Ta có:
\(2x-3⋮x+1\)

\(\Rightarrow\left(2x+2\right)-5⋮x+1\)

\(\Rightarrow5⋮x+1\)

\(\Rightarrow x+1\in\left\{1;-1;5;-5\right\}\)

+) \(x+1=1\Rightarrow x=0\)

+) \(x+1=-1\Rightarrow x=-2\)

+) \(x+1=5\Rightarrow x=4\)

+) \(x+1=-5\Rightarrow x=-6\)

Vậy \(x\in\left\{0;-2;4;-6\right\}\)

 

 

\(\Rightarrow5⋮x+1\)

13 tháng 12 2016

1)Ta có:\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

\(\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\frac{a}{c}\cdot\frac{b}{d}=\frac{ab}{cd}=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\)(tính chất dãy tỉ số bằng nhau)

\(\Rightarrow\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\left(đpcm\right)\)

2)\(P=\frac{2x-3}{x+1}=\frac{2x+2-5}{x+1}=\frac{2\left(x+1\right)-5}{x+1}=2-\frac{5}{x+1}\)

\(\Rightarrow P\in Z\Leftrightarrow2-\frac{5}{x+1}\in Z\Leftrightarrow\frac{5}{x+1}\in Z\Leftrightarrow5⋮x+1\Leftrightarrow x+1\inƯ\left(5\right)\)

\(\Rightarrow x+1\in\left\{-1;-5;1;5\right\}\)

\(\Rightarrow x\in\left\{-2;-6;0;4\right\}\)

4 tháng 4 2017

a) A+B=x2+1+3-4x=0 

<=> x2-4x+4=0 <=> (x-2)2=0

=> x=2

b) \(\frac{1}{A+B}=\frac{1}{\left(x-2\right)^2}\)

Để Biểu thức có giá trị nguyên => 1 phải chia hết cho (x-2)2 => (x-2)2=1 => x-2=-1 và x-2=1

=> x=1 và x=3

c) \(\frac{B}{A}=\frac{3-4x}{x^2+1}\)

5 tháng 4 2017

cảm ơn bạn nhiều

14 tháng 8 2020

Các bài này em áp dụng công thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\). Dấu "=" xảy ra khi tích \(a.b\ge0\),

a) Ta có : \(x-y=3\Rightarrow x=3+y\).

Do đó : \(B=\left|x-6\right|+\left|y+1\right|\)

\(=\left|3+y-6\right|+\left|y+1\right|=\left|3-y\right|+\left|y+1\right|\)

\(\ge\left|3-y+y+1\right|=4\)

Dấu "=" xảy ra \(\Leftrightarrow\left(3-y\right)\left(y+1\right)\ge0\)

\(\Leftrightarrow\hept{\begin{cases}-1\le y\le3\\2\le x\le6\end{cases},x-y=3}\)

Vậy giá trị nhỏ nhất của \(B=4\) \(\Leftrightarrow\hept{\begin{cases}-1\le y\le3\\2\le x\le6\end{cases},x-y=3}\)

b) Ta có : \(x-y=2\Rightarrow x=2+y\)

Do đó \(C=\left|2x+1\right|+\left|2y+1\right|\)

\(=\left|2y+5\right|+\left|2y+1\right|=\left|-2y-5\right|+\left|2y+1\right|\)

\(\ge\left|-2y-5+2y+1\right|=4\)

Các câu khác tương tự nhé em !

14 tháng 8 2020

Làm nốt câu c

                                                  Bài giải

c, Ta có : 

\(D=\left|2x+3\right|+\left|y+2\right|+2\ge\left|2x+3+y+2\right|+2=\left|3+3+2\right|+2=8+2=10\)

Dấu " = " xảy ra khi \(2x+y=3\)

Vậy \(\text{​​Khi }2x+y=3\text{​​ }Min_D=10\)

5 tháng 10 2023

Bài 1: 

a, \(\dfrac{-x-2}{3}\) = - \(\dfrac{6}{7}\)

      - \(x\) - 2 = - \(\dfrac{18}{7}\)

         \(x\)      = - 2 + \(\dfrac{18}{7}\)

         \(x\)      = - \(\dfrac{4}{7}\)

 

 

5 tháng 10 2023

Bài b,  \(\dfrac{4}{7-x}\) = \(\dfrac{1}{3}\)

            12 = 7 - \(x\)

            \(x\)  = 7 - 12 

            \(x\)  = -5 

 

10 tháng 9 2017

a, Ta có: \(A=\left|x+2\right|+\left|9-x\right|\ge\left|X+2+9-x\right|=11\)

Dấu "=' xảy ra khi \(\left(x+2\right)\left(9-x\right)\ge0\Leftrightarrow-2\le x\le9\)

Vậy MinA = 11 khi -2 =< x =< 9

b, Vì \(\left(x-1\right)^2\ge0\Rightarrow-\left(x-1\right)^2\le0\Rightarrow B=\frac{3}{4}-\left(x-1\right)^2\le\frac{3}{4}\)

Dấu "=" xảy ra khi x = 1

Vậy MaxB = 3/4 khi x=1

10 tháng 9 2017

Ta có :\(A=\left|x+2\right|+\left|9-x\right|\ge\left|x+2+9-x\right|=11\)

Vậy \(A_{min}=11\) khi \(2\le x\le9\)

6 tháng 7 2016

các bạn ơi, giúp mình với, mình đang cần gấp!

6 tháng 7 2016

\(M=\frac{x+3}{7+x}=\frac{x+3}{x+7}\)

(*) M>0 <=> x+3 và x+7 cùng dấu

\(\left(+\right)\hept{\begin{cases}x+3< 0\\x+7< 0\end{cases}=>\hept{\begin{cases}x< -3\\x< -7\end{cases}=>x< -7}}\)

\(\left(+\right)\hept{\begin{cases}x+3>0\\x+7>0\end{cases}=>\hept{\begin{cases}x>-3\\x>-7\end{cases}=>x>-3}}\)

Vậy x<-7 hoặc x>-3 thì thỏa mãn M>0

(*)M<0 <=> x+3 và x+7 trái dấu

Mà x+3<x+7

\(=>\hept{\begin{cases}x+3< 0\\x+7>0\end{cases}=>\hept{\begin{cases}x< -3\\x>-7\end{cases}=>-7< x< -3}}\)

Vậy......

(*)M nguyên <=> x+3 chia hết cho x+7

<=>(x+7)-4 chia hết cho x+7

Mà x+7 chia hết cho x+7

=>-4 chia hết cho x+7=>x+7 E Ư(-4)={...},tới đây bn đã có thể tự làm tiếp rồi nhé

(*)M>1 \(< =>M=\frac{x+3}{x+7}>1< =>\frac{x+3}{x+7}-1>0< =>\frac{x+3-x-7}{x+7}>0< =>\frac{-4}{x+7}>0< =>x< -7\)

25 tháng 4 2016

\(\left(x-3\right)^2\ge0\) với mọi x

\(\left(y-1\right)^2\ge0\) với mọi y

=>\(\left(x-3\right)^2+\left(y-1\right)^2\ge0\) với mọi x;y

=>\(\left(x-3\right)^2+\left(y-1\right)^2+5\ge5\) với mọi x;y

Dấu "=" xảy ra

<=>\(\left(x-3\right)^2=\left(y-1\right)^2=0\Leftrightarrow\int^{x-3=0}_{y-1=0}\Leftrightarrow\int^{x=3}_{y=1}\)

Vậy GTNN của \(\left(x-3\right)^2+\left(y-1\right)^2=5\) tại x=3;y=1