Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(a=\dfrac{1}{x};b=\dfrac{1}{y};c=\dfrac{1}{z}\Rightarrow xyz=1\) và \(x;y;z>0\)
Gọi biểu thức cần tìm GTNN là P, ta có:
\(P=\dfrac{1}{\dfrac{1}{x^3}\left(\dfrac{1}{y}+\dfrac{1}{z}\right)}+\dfrac{1}{\dfrac{1}{y^3}\left(\dfrac{1}{z}+\dfrac{1}{x}\right)}+\dfrac{1}{\dfrac{1}{z^3}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)}\)
\(=\dfrac{x^3yz}{y+z}+\dfrac{y^3zx}{z+x}+\dfrac{z^3xy}{x+y}=\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\)
\(P\ge\dfrac{\left(x+y+z\right)^2}{y+z+z+x+x+y}=\dfrac{x+y+z}{2}\ge\dfrac{3\sqrt[3]{xyz}}{2}=\dfrac{3}{2}\)
\(P_{min}=\dfrac{3}{2}\) khi \(x=y=z=1\) hay \(a=b=c=1\)
\({x^2} = {4^2} + {2^2} = 20 \Rightarrow x = 2\sqrt 5 \)
\({y^2} = {5^2} - {4^2} = 9 \Leftrightarrow y = 3\)
\({z^2} = {\left( {\sqrt 5 } \right)^2} + {\left( {2\sqrt 5 } \right)^2} = 25 \Rightarrow z = 5\)
\({t^2} = {1^2} + {2^2} = 5 \Rightarrow t = \sqrt 5 \)
Bài 4:
a. Vì $\triangle ABC\sim \triangle A'B'C'$ nên:
$\frac{AB}{A'B'}=\frac{BC}{B'C'}=\frac{AC}{A'C'}(1)$ và $\widehat{ABC}=\widehat{A'B'C'}$
$\frac{DB}{DC}=\frac{D'B'}{D'C}$
$\Rightarrow \frac{BD}{BC}=\frac{D'B'}{B'C'}$
$\Rightarrow \frac{BD}{B'D'}=\frac{BC}{B'C'}(2)$
Từ $(1); (2)\Rightarrow \frac{BD}{B'D'}=\frac{BC}{B'C'}=\frac{AB}{A'B'}$
Xét tam giác $ABD$ và $A'B'D'$ có:
$\widehat{ABD}=\widehat{ABC}=\widehat{A'B'C'}=\widehat{A'B'D'}$
$\frac{AB}{A'B'}=\frac{BD}{B'D'}$
$\Rightarrow \triangle ABD\sim \triangle A'B'D'$ (c.g.c)
b.
Từ tam giác đồng dạng phần a và (1) suy ra:
$\frac{AD}{A'D'}=\frac{AB}{A'B'}=\frac{BC}{B'C'}$
$\Rightarrow AD.B'C'=BC.A'D'$
Vì MN // BC theo Talet ta có:
\(\dfrac{y}{20}\) = \(\dfrac{10}{15}\) = \(\dfrac{x}{12}\) => x = \(\dfrac{10}{15}\) . 12 = 8; y = \(\dfrac{10}{15}\) . 20 = \(\dfrac{40}{3}\)
a.
\(A=\left(\dfrac{\left(x-1\right)\left(x^2+x+1\right)}{x\left(x-1\right)}+\dfrac{\left(x-2\right)\left(x+2\right)}{x\left(x-2\right)}+\dfrac{x-2}{x}\right):\dfrac{x+1}{x}\)
\(=\left(\dfrac{x^2+x+1}{x}+\dfrac{x+2}{x}+\dfrac{x-2}{x}\right):\dfrac{x+1}{x}\)
\(=\left(\dfrac{x^2+3x+1}{x}\right).\dfrac{x}{x+1}\)
\(=\dfrac{x^2+3x+1}{x+1}\)
2.
\(x^3-4x^3+3x=0\Leftrightarrow x\left(x^2-4x+3\right)=0\)
\(\Leftrightarrow x\left(x-1\right)\left(x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=1\left(loại\right)\\x=3\end{matrix}\right.\)
Với \(x=3\Rightarrow A=\dfrac{3^2+3.3+1}{3+1}=\dfrac{19}{4}\)
8: =>5x(x-1)-3(x+1)=5x^2+5
=>5x^2-5x-3x-3=5x^2+5
=>-8x=8
=>x=-1(loại)
9: =>5(x-2)+x=2(x+2)
=>5x-10+x=2x+4
=>6x-10=2x+4
=>4x=14
=>x=3,5(nhận)
10: =>(x+3)^2-(x-3)^2=-3x
=>x^2+6x+9-x^2+6x-9=-3x
=>12x+3x=0
=>x=0
\(8,\dfrac{5x}{x+1}-\dfrac{3}{x-1}=\dfrac{5\left(x^2+1\right)}{x^2-1}\left(dkxd:x\ne\pm1\right)\)
\(\Leftrightarrow\dfrac{5x}{x+1}-\dfrac{3}{x-1}-\dfrac{5\left(x^2+1\right)}{\left(x-1\right)\left(x+1\right)}=0\)
\(\Leftrightarrow5x\left(x-1\right)-3\left(x+1\right)-5x^2-5=0\)
\(\Leftrightarrow5x^2-5x-3x-3-5x^2-5=0\)
\(\Leftrightarrow-8x-8=0\)
\(\Leftrightarrow-8\left(x+1\right)=0\)
\(\Leftrightarrow x=-1\left(ktmdk\right)\)
Vậy \(S=\varnothing\)
\(9,\dfrac{5}{x+2}-\dfrac{4}{4-x^2}=\dfrac{2}{x-2}\)
\(\Leftrightarrow\dfrac{5}{x+2}-\dfrac{4}{x^2-4}-\dfrac{2}{x-2}=0\left(dkxd:x\ne\pm2\right)\)
\(\Leftrightarrow5\left(x-2\right)-4-2\left(x+2\right)=0\)
\(\Leftrightarrow5x-10-4-2x-4=0\)
\(\Leftrightarrow3x-18=0\)
\(\Leftrightarrow3x=18\)
\(\Leftrightarrow x=6\left(tmdk\right)\)
Vậy \(S=\left\{6\right\}\)