\(A=\sqrt{x+2}+\frac{3}{11}\). Tìm...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2019

Ta có căn(x + 5) + 2/11 >= 2/11 (vì căn (x+5) >= 0)

Vậy A đạt giá trị nhỏ nhất là 2/11 khi và chỉ khi x = -5

 Ta có : 3/19 - 3.căn(x - 2) <= 3/19 ( vì -3.căn(x-2) <= 0)

Vậy B đạt giá  trị lớn nhất là 3/19 khi và chỉ khi x = 5

C = (căn - 3)/2 có giá trị nguyên nên (căn - 3) chia hết cho 2

Suy ra x là số chính phương lẻ

 Vì x < 50 nên x thuộc { 1^2;3^2;5^2;7^2} hay x thuộc {1;9;25;49}

Bài 1:Tính:a,\(\sqrt{\left(a-2\right)^2}\)với a\(\ge\)2b,\(\sqrt{\left(a+10\right)^2}\)với a<-10c,\(\sqrt{\left(3-a\right)^2}\)(a\(\in\)R)Bài 2;Tìm x để:a,\(\sqrt{x}\)=1/2b,\(\sqrt{x+7}\)=4c,\(\sqrt{2x-1}\)=1/3d,\(\sqrt{x+1}\)=0e,\(\sqrt{x-3}\)+2=0f,\(\sqrt{2x}\)+3=9Bài 3:Cho A=\(\sqrt{x^2+y^2-2z^2}\).Tính giá trị A khi x=\(\sqrt{5}\),y=2,z=0Bài 4:So sánh:a,\(4\frac{8}{33}\)và 3\(\sqrt{2}\)b,5.\(\sqrt{\left(-10\right)^2}\) và 10.\(\sqrt{\left(-5\right)^2}\)Bài 5:Không...
Đọc tiếp

Bài 1:Tính:

a,\(\sqrt{\left(a-2\right)^2}\)với a\(\ge\)2

b,\(\sqrt{\left(a+10\right)^2}\)với a<-10

c,\(\sqrt{\left(3-a\right)^2}\)(a\(\in\)R)

Bài 2;Tìm x để:

a,\(\sqrt{x}\)=1/2

b,\(\sqrt{x+7}\)=4

c,\(\sqrt{2x-1}\)=1/3

d,\(\sqrt{x+1}\)=0

e,\(\sqrt{x-3}\)+2=0

f,\(\sqrt{2x}\)+3=9

Bài 3:Cho A=\(\sqrt{x^2+y^2-2z^2}\).Tính giá trị A khi x=\(\sqrt{5}\),y=2,z=0

Bài 4:So sánh:

a,\(4\frac{8}{33}\)và 3\(\sqrt{2}\)

b,5.\(\sqrt{\left(-10\right)^2}\) và 10.\(\sqrt{\left(-5\right)^2}\)

Bài 5:Không dùng bảng số liệu máy tính hãy so sánh:

a.\(\sqrt{26}+\sqrt{17}\) và 9

b,\(\sqrt{8}-\sqrt{5}\) và 1

c,\(\sqrt{63-27}\) và \(\sqrt{63}-\sqrt{27}\)

Bài 6:Hãy so sánh A và B

A=\(\sqrt{225}-\frac{1}{\sqrt{5}}\)-1

B=\(\sqrt{196}-\frac{1}{\sqrt{6}}\) 

Bài 7:a,CHo M=\(\frac{\sqrt{x}-1}{2}\).Tìm x\(\in\)Z và x<50 để m có giá trị nguyên

         b,Cho P=\(\frac{9}{\sqrt{5}-5}\).Tìm x\(\in\)Z để P có giá trị nguyên

Bài 8:cho P=1/4+2\(\sqrt{x-3}\);Q=9.3.\(\sqrt{x-2}\)

a,Tìm GTNN của P

b,Tìm giá trị lớn nhất của Q

Bài 8:Cho biểu thức :A=|x-1/2|+3/4-x

a,rút gọn A

b,Tìm GTNN của A

Baif9:Cho biểu thức:B=0,(21)-x-?x-0,(4)|

a,Rút gọn B

b,Tìm GTLN của B

Bài 10:So sánh:

a,0,55(56) và 0,5556

b,-1/7 và -0,1428(57)

c,\(2\frac{2}{3}\)và 2,67

d,-7/6 và 1,16667

e,0,(31) và 0,3(11)

      Mn cố gắng giúp mk hết,mình cảm ơn nhìu.Ai xong trước mk tick cho:))

6
3 tháng 2 2019

các bạn giúp mk để mk ăn tết cho zui

3 tháng 2 2019

luong thuy anh giúp mk vs

1 tháng 11 2018

1. a, \(2^{x+2}.3^{x+1}.5^x=10800\)

\(2^x.2^2.3^x.3.5^x=10800\)

\(\Rightarrow\left(2.3.5\right)^x.12=10800\)

\(\Rightarrow30^x=\frac{10800}{12}=900\)

\(\Rightarrow30^x=30^2\)

\(\Rightarrow x=2\)

b,\(3^{x+2}-3^x=24\)

\(\Rightarrow3^x\left(3^2-1\right)=24\)

\(\Rightarrow3^x.8=24\)\(\Rightarrow3^x=3^1\Rightarrow x=1\)

2, c, Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)

Dấu bằng xảy ra khi \(ab\ge0\)

Ta có: \(\left|x-2017\right|=\left|2017-x\right|\)

 \(\Rightarrow\left|x-1\right|+\left|2017-x\right|\ge\left|x-1+2017-x\right|\)\(=\left|2016\right|=2016\)

Dấu bằng xảy ra khi \(\left(x-1\right)\left(2017-x\right)\ge0\)\(\Rightarrow2017\ge x\ge1\)

Vậy \(Min_{BT}=2016\)khi \(2017\ge x\ge1\)

d, Áp dụng BĐT \(\left|a\right|-\left|b\right|\le\left|a-b\right|\forall a,b\inℝ\)

Dấu bằng xảy ra khi \(b\left(a-b\right)\ge0\)

Ta có \(B=\left|x-2018\right|-\left|x-2017\right|\le\left|x-2018-x+2017\right|\)

\(\Rightarrow B\le1\)

Dấu bằng xảy ra khi \(\left(x-2017\right)\left[\left(x-2018\right)-\left(x-2017\right)\right]\ge0\)

\(\Rightarrow x\le2017\)

Vậy \(Max_B=1\) khi \(x\le2017\)

1 tháng 11 2018

để BT \(\frac{5}{\sqrt{2x+1}+2}\) nguyên thì \(\sqrt{2x+1}+2\inƯ\left(5\right)\)

suy ra \(\sqrt{2x+1}+2\in\left\{-5;-1;1;5\right\}\)

\(\Rightarrow\sqrt{2x+1}\in\left\{-7;-3;-1;3\right\}\)

Mà \(\sqrt{2x+1}\ge0\) nên \(\sqrt{2x+1}\)chỉ có thể bằng 3

\(\Rightarrow2x+1=9\Rightarrow x=4\)( thỏa mãn điều kiện \(x\ge-\frac{1}{2}\))

Đây là cách lớp 9. Mk đang phân vân ko biết giải theo cách lớp 7 thế nào!!!!

17 tháng 12 2016

lop 7 lam gi co nghiem voi da thuc ha ban

18 tháng 12 2016

Đề thi HSG lớp 7 đó bạn

Áp dụng tính chất:\(|A|\ge0\)(Dấu "=" xảy ra khi và chỉ khi A=0)

Ta có\(A\ge0+0+0=0\)

Suy ra để A nhỏ nhát \(\Leftrightarrow\hept{\begin{cases}7x-5y=0\Rightarrow7x=5y\Rightarrow\frac{x}{5}=\frac{y}{7}\Rightarrow\frac{x}{10}=\frac{y}{14}\left(1\right)\\2z-3x=0\Rightarrow2z=3x\Rightarrow\frac{z}{3}=\frac{x}{2}\Rightarrow\frac{z}{15}=\frac{x}{10}\left(2\right)\\xy+yz+xz-2000=0\Rightarrow xy+yz+xz=2000\left(3\right)\end{cases}}\)

Từ (1) và (2)

\(\Rightarrow\frac{x}{10}=\frac{y}{14}=\frac{z}{15}=k\left(k\inℤ\right)\)

\(\Rightarrow\hept{\begin{cases}x=10k\\y=14k\\z=15k\end{cases}}\left(4\right)\)

Thay (4) vào (3)

\(\Rightarrow10k14k+14k15k+10k15k=2000\)

\(\Rightarrow140k^2+210k^2+150k^2=2000\)

\(\Rightarrow500k^2=2000\Rightarrow k^2=4=2^2=\left(-2\right)^2\)

Lần lượt thay K ta tìm đc các giá trị của x,y,z

Vậy ...

Bài 1: 

a: \(\left(2x-1\right)^4=16\)

=>2x-1=2 hoặc 2x-1=-2

=>2x=3 hoặc 2x=-1

=>x=3/2 hoặc x=-1/2

b: \(\left(2x-y+7\right)^{2012}+\left|x-3\right|^{2013}< =0\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-y+7=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=2x+7=y=2\cdot3+7=13\end{matrix}\right.\)

c: \(10800=2^4\cdot3^3\cdot5^2\)

mà \(2^{x+2}\cdot3^{x+1}\cdot5^x=10800\)

nên \(\left\{{}\begin{matrix}x+2=4\\x+1=3\\x=2\end{matrix}\right.\Leftrightarrow x=2\)

 

27 tháng 11 2016

Bài 1:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=kb;c=kd\)

Khi đó: \(\frac{ac}{bd}=\frac{bk.dk}{bd}=k^2\)

           \(\frac{a^2+c^2}{b^2+d^2}=\frac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\frac{b^2k^2+d^2k^2}{b^2+d^2}=\frac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\)

Vậy \(\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\)

27 tháng 11 2016

bạn giải giúp mik bài 2 và bài 3 đc ko