\(\frac{1}{125}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2021

A=8x^3-1/125

=(2x)^3-(1/5)^3

=(2x-1/5)(4x^2+2/5x+1/25)

27 tháng 8 2021

\(A=8x^3-\frac{1}{125}\)

\(A=\left(2x\right)^3-\left(\frac{1}{5}\right)^3\)

\(A=\left(2x-\frac{1}{5}\right)\left(4x^2+\frac{2}{5}x+\frac{1}{25}\right)\)

\(B=\left(x^2\right)^3-\left(\frac{1}{4}y\right)^3\)

\(B=\left(x^2-\frac{1}{4}y\right)\left(x^2+\frac{1}{4}x^2y+\frac{1}{16}y^2\right)\)

NM
14 tháng 8 2021

1.\(x^{16}-y^{16}=\left(x^8-y^8\right)\left(x^8+y^8\right)\)

2.\(x^3-125=x^3-5^3=\left(x-5\right)\left(x^2+5x+25\right)\)

\(-64+\frac{1}{8}x^3=\left(\frac{x}{2}\right)^3-4^3=\left(\frac{x}{2}-4\right)\left(\frac{x^2}{4}+2x+16\right)\)

\(8x^3+60x^2y+150xy^2+125y^3=\left(2x\right)^3+3.\left(2x\right)^2.\left(5y\right)+3.\left(2x\right).\left(5y\right)^2+\left(5y\right)^3\)

\(=\left(2x+5y\right)^3\)

14 tháng 8 2021

cám ơn bn Nguyễn Minh Quang nhé

10 tháng 7 2019

\(1,\left(\frac{a}{3}+4y\right)^2=\frac{a^2}{9}+\frac{8ay}{3}+16y^2\)

\(2,\)Bạn xem lại đề bài giùm mk nhé

\(\left(x^2+\frac{2}{5}y\right).\left(x^2-\frac{2}{5}y\right)=\left(x^2\right)^2-\left(\frac{2}{5}y\right)^2=x^4-\frac{4}{25}y^2\)

15 tháng 8 2020

a) \(\left(\frac{1}{3}u+3v\right)^2=\frac{1}{9}u^2+2uv+9v^2\)

b) \(\left(\frac{1}{2}x^2-6x\right)^2=\frac{1}{4}x^4-6x^3+36x^2\)

c) \(\left(-\frac{1}{2}a+b\right)^2=\frac{1}{4}a^2-ab+b^2\)

d) \(\left(-\frac{4}{3}a-\frac{1}{3}b\right)^2=\frac{16}{9}a^2+\frac{8}{9}ab+\frac{1}{9}b^2\)

e) \(\left(\frac{2}{3}x-\frac{3}{2}y\right)\left(\frac{2}{3}x+\frac{3}{2}y\right)=\frac{4}{9}x^2-\frac{9}{4}y^2\)

15 tháng 8 2020

a) \(\left(\frac{1}{3}u+3v\right)^2=\frac{1}{9}u^2+2uv+9v^2\)

b) \(\left(\frac{1}{2}x^2-6x\right)^2=\frac{1}{4}x^4-6x^3+36x^2\)

c) \(\left(-\frac{1}{2}a+b\right)^2=\frac{1}{4}a^2-ab+b^2\)

d) \(\left(-\frac{4}{3}a-\frac{1}{3}b\right)^2=\frac{16}{9}a^2+\frac{8}{9}ab+\frac{1}{9}b^2\)

e) \(\left(\frac{2}{3}x-\frac{3}{2}y\right)\left(\frac{2}{3}x+\frac{3}{2}y\right)=\left(\frac{2}{3}x\right)^2-\left(\frac{3}{2}y\right)^2=\frac{4}{9}x^2-\frac{9}{4}y^2\)

14 tháng 10 2019

b) \(-4x^2-4x-1\)

\(=-\left(4x^2+4x+1\right)\)

\(=-\left(2x+1\right)^2\)

c) \(\frac{4}{9}x^2-25y^2\)

\(=\left(\frac{2}{3}x+5y\right)\left(\frac{2}{3}x-5y\right)\)

d) \(\frac{1}{27}x^3-8\)

\(=\left(\frac{1}{3}x-2\right)\left(\frac{1}{9}x+\frac{2}{3}x+4\right)\)

21 tháng 7 2017

x2,x3 là x = 3

A = ???? (mình chưa tìm ra)

Bài 1: 

a: \(\dfrac{x-1}{x+1}-\dfrac{x+1}{x-1}+\dfrac{4}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{x^2-2x+1-x^2-2x-1+4}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{-4x+4}{\left(x-1\right)\left(x+1\right)}=\dfrac{-4}{x+1}\)

b: \(=\dfrac{xy\left(x^2+y^2\right)}{x^4y}\cdot\dfrac{1}{x^2+y^2}=\dfrac{x}{x^4}=\dfrac{1}{x^3}\)

c: Đề thiếu rồi bạn

c: \(=\dfrac{1}{3x-2}-\dfrac{4}{3x+2}+\dfrac{3x-6}{\left(3x-2\right)\left(3x+2\right)}\)

\(=\dfrac{3x+2-12x+8+3x-6}{\left(3x-2\right)\left(3x+2\right)}\)

\(=\dfrac{-6x+4}{\left(3x-2\right)\left(3x+2\right)}=\dfrac{-2}{3x+2}\)

d: \(=\dfrac{x^2-4-x^2+10}{x+2}=\dfrac{6}{x+2}\)

e: \(=\dfrac{1}{2\left(x-y\right)}-\dfrac{1}{2\left(x+y\right)}-\dfrac{y}{\left(x-y\right)\left(x+y\right)}\)

\(=\dfrac{x+y-x+y-2y}{2\left(x-y\right)\left(x+y\right)}=\dfrac{0}{2\left(x-y\right)\left(x+y\right)}=0\)

5 tháng 3 2017

a.2x#+_2 . quy đồng khử mẫu tchung : (x+2)(x+1)+(x-1)(x-2)--->2x^2 + 4=2(x^2+2). --> s={x thuộc R/ X#+_2}

23 tháng 4 2017

 a) ĐKXĐ \(\hept{\begin{cases}x\ne-2\\x\ne2\end{cases}}\)

 \(\Rightarrow\left(x+1\right)\left(x+2\right)+\left(x-1\right)\left(x-2\right)-2x\left(x^2+2\right)=0\)

 \(\Leftrightarrow x^2+3x+2+x^2-3x+2-2x^2-4=0\)

 \(\Leftrightarrow0x=0\)(vô số nghiệm)

nghiệm x thỏa mãn phương trình S \(\in\)R  với   \(\hept{\begin{cases}x\ne-2\\x\ne2\end{cases}}\)

 b) ĐKXĐ  \(\hept{\begin{cases}x\ne0\\x\ne2\end{cases}}\)

\(\Rightarrow\frac{5-x}{4x\left(x-2\right)}-\frac{1}{8\left(x-2\right)}=\frac{1}{2x\left(x-2\right)}-\frac{7}{8x}\) 

 \(\Rightarrow2\left(5-x\right)-x-4\left(x-1\right)+7\left(x-2\right)=0\)

\(\Leftrightarrow10-2x-x-4x+4+7x-14=0\) 

 \(\Leftrightarrow0x=0\)(phương trìh vô số nghiệm)

nghiệm x thỏa mãn phương trình S \(\in\)R  với   \(\hept{\begin{cases}x\ne0\\x\ne2\end{cases}}\)

9 tháng 1 2017

a) A=\(\frac{x+1}{6x^3-6x^2}-\frac{x-2}{8x^3-8x}=\frac{x+1}{6x^2\left(x-1\right)}-\frac{x-2}{8x\left(x-1\right)\left(x+1\right)}=\frac{4\left(x+1\right)^2-3x\left(x-2\right)}{24x^2\left(x-1\right)\left(x+1\right)}=\frac{4x^2+8x+4-3x^2+6x}{24x^2\left(x-1\right)\left(x+1\right)}=\frac{x^2+14x+10}{24x^2\left(x-1\right)\left(x+1\right)}\)

17 tháng 1 2021

Câub mô