\(\int\frac{1}{\left(X^2+1\right)^2}\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
10 tháng 2 2017

Thề là bài của bạn Kirito làm mình không hiểu gì hết. Đáp án cuối cùng của bạn cũng sai nốt, tính tích phân thì ra giá trị cụ thể chứ làm gì còn $c$

Lời giải:

Ta có \(I=\underbrace{\int ^{1}_{0}x^2dx}_{A}+\underbrace{\int ^{1}_{0}x^3\sqrt{1-x^2}dx}_{B}\)

Xét \(A=\left.\begin{matrix} 1\\ 0\end{matrix}\right|\frac{x^3}{3}=\frac{1}{3}\)

Xét \(B=\frac{1}{2}\int ^{1}_{0}x^2\sqrt{1-x^2}d(x^2)\)

Đặt \(\sqrt{1-x^2}=t\Rightarrow x^2=1-t^2\). Khi đó

\(B=-\frac{1}{2}\int ^{1}_{0}(1-t^2)td(1-t^2)=\int ^{1}_{0}t^2(1-t^2)dt=\left.\begin{matrix} 1\\ 0\end{matrix}\right|\left ( \frac{t^3}{3}-\frac{t^5}{5} \right )=\frac{2}{15}\)

\(\Rightarrow I=A+B=\frac{7}{15}\)

10 tháng 2 2017

Chắc bạn học lớp 12 nhỉ???hihi

Đ/A:

\(I=\int\limits^1_0x^2\left(1+x\sqrt{1-x^2}\right)dx=\int\limits^1_0x^2dx+\int\limits^1_0x^3\sqrt{1-x^2}dx\)

\(I_1=\int\limits^1_0x^2dx=\frac{x^3}{3}\)|\(_0^1=\frac{1}{3}\)

\(I_2=\int\limits^1_0x^3\sqrt{1-x^2}dx\)

Đặt \(t=\sqrt{1-x^2}\Rightarrow x^2=1-t^2\Rightarrow xdx\Rightarrow tdt\)

Đổi cận: \(x=0\Rightarrow t=1;x=1\Rightarrow t=0\)

\(\Rightarrow I_2=-\int\limits^1_0\left(1-t^2\right)t^2dt=\int\limits^1_0\left(t^2-t^4\right)dt=\left(\frac{t^3}{3}-\frac{t^5}{5}\right)\)|\(_0^1=\frac{2}{15}\)

Vậy \(I=I_1+I_2=\frac{7}{5}\)

Đặt \(u=x\Rightarrow du=dx;dv=c^{2x}\) chọn \(v=\frac{1}{2}c^{2x}\)

\(\Rightarrow\int\limits^1_0xc^{2x}dx=\frac{x}{2}c^{2x}\)|\(_0^1-\frac{1}{2}\int\limits^1_0c^{2x}dx=\frac{c^2}{2}-\frac{1}{4}c^{2x}\)|\(_0^1=\frac{c^2+1}{4}\)

Vậy \(I=\frac{3c^2+7}{2}\)

29 tháng 1 2016

humbucminh

30 tháng 1 2016

Bạn Thu Hà ơi. bạn giúp mình giải tiếp với nhé. Mình bí rồi  bucminh
NGUYÊN HÀM, TÍCH PHÂN VÀ ỨNG DỤNG
Đặt NGUYÊN HÀM, TÍCH PHÂN VÀ ỨNG DỤNG ;
 NGUYÊN HÀM, TÍCH PHÂN VÀ ỨNG DỤNG;
Khi đó tích phân NGUYÊN HÀM, TÍCH PHÂN VÀ ỨNG DỤNG

a: Để A là số nguyên thì \(x-1\in\left\{1;-1;3;-3\right\}\)

hay \(x\in\left\{2;0;4;-2\right\}\)

b: Để B là số nguyên thì \(2x-1\in\left\{1;-1;2;-2;4;-4\right\}\)

hay \(x\in\left\{1;0\right\}\)(do x là số nguyên)

c: Để C là số nguyên thì \(3x-3+10⋮x-1\)

\(\Leftrightarrow x-1\in\left\{1;-1;2;-2;5;-5;10;-10\right\}\)

hay \(x\in\left\{2;0;3;-1;6;-4;11;-9\right\}\)

d: Để D là số nguyên thì \(4x-1⋮x-3\)

\(\Leftrightarrow x-3\in\left\{1;-1;11;-11\right\}\)

hay \(x\in\left\{4;2;14;-8\right\}\)

24 tháng 2 2017

\(A=\left(\frac{1+i}{1-i}\right)^{11}=\left(i\right)^{11}=i\cdot\left(i^2\right)^5=-i\)

\(B=\left(\frac{2i}{1+i}\right)^8=\left(1+i\right)^8=\left[\left(1+i\right)^2\right]^4=\left(2i\right)^4=16\)

\(\Rightarrow\overline{z}=16-i\Leftrightarrow z=16+i\)

Vậy \(\left|\overline{z}+iz\right|=\left|15+15i\right|=15\sqrt{2}\)

15 tháng 6 2017

vui Dạ cảm ơn ạ

12 tháng 3 2022

tui ne2

AH
Akai Haruma
Giáo viên
6 tháng 3 2017

Câu 1)

Ta có \(I=\int ^{1}_{0}\frac{dx}{\sqrt{3+2x-x^2}}=\int ^{1}_{0}\frac{dx}{4-(x-1)^2}\).

Đặt \(x-1=2\cos t\Rightarrow \sqrt{4-(x-1)^2}=\sqrt{4-4\cos^2t}=2|\sin t|\)

Khi đó:

\(I=\int ^{\frac{2\pi}{3}}_{\frac{\pi}{2}}\frac{d(2\cos t+1)}{2\sin t}=\int ^{\frac{2\pi}{3}}_{\frac{\pi}{2}}\frac{2\sin tdt}{2\sin t}=\int ^{\frac{2\pi}{3}}_{\frac{\pi}{2}}dt=\left.\begin{matrix} \frac{2\pi}{3}\\ \frac{\pi}{2}\end{matrix}\right|t=\frac{\pi}{6}\)

Câu 3)

\(K=\int ^{3}_{2}\ln (x^3-3x+2)dx=\int ^{3}_{2}\ln [(x+2)(x-1)^2]dx\)

\(=\int ^{3}_{2}\ln (x+2)d(x+2)+2\int ^{3}_{2}\ln (x-1)d(x-1)\)

Xét \(\int \ln tdt\): Đặt \(\left\{\begin{matrix} u=\ln t\\ dv=dt\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=\frac{dt}{t}\\ v=t\end{matrix}\right.\Rightarrow \int \ln t dt=t\ln t-t\)

\(\Rightarrow K=\left.\begin{matrix} 3\\ 2\end{matrix}\right|(x+2)[\ln (x+2)-1]+2\left.\begin{matrix} 3\\ 2\end{matrix}\right|(x-1)[\ln (x-1)-1]\)

\(=5\ln 5-4\ln 4-1+4\ln 2-2=5\ln 5-4\ln 2-3\)

AH
Akai Haruma
Giáo viên
6 tháng 3 2017

Bài 2)

\(J=\int ^{1}_{0}x\ln (2x+1)dx\). Đặt \(\left\{\begin{matrix} u=\ln (2x+1)\\ dv=xdx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=\frac{2dx}{2x+1}\\ v=\frac{x^2}{2}\end{matrix}\right.\)

Khi đó:

\(J=\left.\begin{matrix} 1\\ 0\end{matrix}\right|\frac{x^2\ln (2x+1)}{2}-\int ^{1}_{0}\frac{x^2}{2x+1}dx\)\(=\frac{\ln 3}{2}-\frac{1}{4}\int ^{1}_{0}(2x-1+\frac{1}{2x+1})dx\)

\(=\frac{\ln 3}{2}-\left.\begin{matrix} 1\\ 0\end{matrix}\right|\frac{x^2-x}{4}-\frac{1}{8}\int ^{1}_{0}\frac{d(2x+1)}{2x+1}=\frac{\ln 3}{2}-\left.\begin{matrix} 1\\ 0\end{matrix}\right|\frac{\ln (2x+1)}{8}\)

\(=\frac{\ln 3}{2}-\frac{\ln 3}{8}=\frac{3\ln 3}{8}\)