Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mội người tham khảo nhé !
Bạn ấy đã trả lời : " Không có số nào như vậy ". Ta có thể giải thích điều này như sau :
Giả sử số phải tìm là abcd ( 0 \(\le\)a ; b ; c ; d \(\le\)9 , a \(\ne\)0 ; d \(\ne\)0 )
Khi đó, abcd . 6 = dcba
a chỉ có thể bằng 1 vì nếu a bằng 2 thì abcd . 6 sẽ cho một số có 5 chữ số.
Mặt khác, tích của bất kì số tự nhiên nào với 6 cũng là một số chẵn, tức là a phải chẵn.
Mâu thuẫn này chứng tỏ không tồn tại các số nào thỏa mãn đề bài.
Kết luận này không chỉ đúng với số có bốn chữ số mà đúng với số có số chữ số tùy ý.
gọi số cần tìm là abcd
số có được khi đọc từ phải qua trái là: dcba
theo đề bài ta có: dcba = 6. abcd
d .1000 + c.100 + b.10 + a = 6.(a. 1000 + b. 100 + c. 10 + d)
1000d - 6d + 100c - 60c = 6000a - a + 600b - 10b
994d + 40c = 5999a + 590b
nếu d = 0 => 40c = 5999a + 590b
Nhận xét 40.c ; 590.b là các số tận cùng bằng chữ số 0 nên 5999.a cũng phải tận cùng bằng chữ số 0 => a = 0 (loại )
nếu d = 1 => 994 = 5999.a + 590.b - 40.c
số 5999.a phải là số có tận cùng bằng chữ số 4 => a có thể = 6
=> 994 = 5999.6 + 590.b - 40.c => 590.b - 40.c = -35000 => 590.b = 40.c -35000
Nhận xét c lớn nhất = 9 nên 40.c -35000 sẽ < 0 mà 590.b > 0 => loại
nếu d = 2 => 1988 = 5999.a + 590.b - 40.c. Lập luận như trên thì a = 2
=> 40.c - 590.b = 5999.2 -1988 = 10010 => loại
nếu d = 3 => 2982 = 5999.a + 590.b - 40.c => a = 8 => 40. c - 590b = 5999.8 - 2982 = 45010 => loại
nếu d = 4 => 3976 = 5999.a + 590b - 40c => a=4 => 40c - 590b = 5999.4 - 3976 = 20020 => loại
d = 5 => 4970 = 5999.a + 590b - 40c => a=0 => loại
d= 6 => 5964 =5999.a + 590b - 40c => a=6 => 40c - 590b = 5999.6 - 5964 >0 => loại
d=7 => 6958 = 5999.a + 590b - 40c => a=2 => 40c - 590b = 5999.2 - 6958 => loại
d=8 => 7952 =5999.a + 590b - 40c => a=8 => 40c - 590b = 5999.8 - 7952 => loại
d=9 => 8946 = 5999.a + 590b - 40c => a=4 => 40c - 590b = 5999.4 - 8946 = 15050 => loại
vậy không có số nào thoả mãn điều kiện đề bài
Số đối xứng có 4 chữ số có dang ABBA, trong đó A phải khác 0. Vậy A có thể bằng 1, 2, ..., 9; còn B có thể từ 0, 1, ..., 9.
Ta có: ABBA = AB x 100 + BA
A lần lượt nhận các giá trị từ 1 đến 9, với mỗi giá trị của A, ta lấy B lần lượt nhận các số từ 0 đến 9.
Khi đó số AB sẽ sinh ra là 10, 11, ..., 90.
Và số BA sẽ sinh ra từ 01, 02, ..., 99 nhưng bỏ đi các số tròn chục 10, 20, ..., 90.
Vậy tổng các số sinh ra là:
T = (10 + 11 + ... + 99)x100 + [(1 + 2 + ... + 99) - (10 + 20 + ... + 90)]
Ta có: Tổng 10 + 11 + ... + 99 = (10 + 99) + (11 + 98) + ... (có 90 số hạng và 45 cặp) = 109 x 45 = 4905.
(1 + 2 + ... + 99) = (1 + 99) + (2 + 98) + ... + (49 + 51) + 50 (có 49 cặp và một số lẻ 50) = 100x49 + 50 = 4950.
(10 + 20 + ... + 90) = 10x(1 + 2 + ... + 9) = 10x[(1 + 9) + (2 + 8) + ... +(4 + 6) + 5] = 10x[10x4 + 5] = 10x45 =450.
Vậy T = 4905x100 + [4950 - 450] = 495.000.
Đáp số: 495.000