Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình bạn tự vẽ nha!
Goi G là diem doi xung voi A qua M.
Cm dc AG=4+4=8,CG=BA=6,AB=CG=6 (ACGB là hbh)
Suy ra tg ACG vuong tai G (Pythagoras dao,6^2+8^2=10^2)
Suy ra goc AGC=90°
Suy ra goc MAB=90° (AB//CG).
M A B C G
Gọi G là điểm đối xứng qua với A qua M.
Vì \(AM=4\Rightarrow\) \(AG=AM+MG=4+4=8\left(cm\right)\)
Vì \(AB=6\Rightarrow CG=6\)
\(\Rightarrow ABGC\) là hình bình hành.
Áp dụng định lý pitago ở \(\Delta ACG\) có:
\(AC^2=GA^2+GC^2\)
\(\Rightarrow10^2=6^2+8^2\)
\(\Rightarrow100=100\) (đúng)
\(\Rightarrow\Delta AGC\) vuông tại G
\(\Rightarrow\widehat{AGC}=90^o\)
\(\Rightarrow\widehat{MAB}=90^o\) (do A đối xứng với G qua M)
Đề cậu viết khó nhìn qá :)
Bài 1 :
Ta có :
\(a+b+c=2014\)
\(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}=\dfrac{1}{9}\)
\(\Leftrightarrow2014\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)=2014.\dfrac{1}{9}\)
\(\Leftrightarrow\dfrac{2014}{a+b}+\dfrac{2014}{b+c}+\dfrac{2014}{c+a}=\dfrac{2014}{9}\)
Mà \(a+b+c=2014\) nên :
\(\Leftrightarrow\dfrac{a+b+c}{a+b}+\dfrac{a+b+c}{b+c}+\dfrac{a+b+c}{c+a}=\dfrac{2014}{9}\)
\(\Leftrightarrow\left(\dfrac{a+b}{a+b}+\dfrac{c}{a+b}\right)+\left(\dfrac{b+c}{b+c}+\dfrac{a}{b+c}\right)+\left(\dfrac{c+a}{c+a}+\dfrac{b}{c+a}\right)=\dfrac{2014}{9}\)
\(\Leftrightarrow3+\dfrac{c}{a+b}+\dfrac{a}{b+c}+\dfrac{b}{c+a}=\dfrac{2014}{9}\)
\(\Leftrightarrow\dfrac{c}{a+b}+\dfrac{a}{b+c}+\dfrac{b}{c+a}=\dfrac{1987}{9}\)
\(\Leftrightarrow S=\dfrac{1987}{9}\)
3. Xét tam giác ADM và tam giác AEM có :
góc ADM = góc AEM = 90 độ
Góc BAM = góc CAM (gt)
AM chung
=>Tam giác ADM = tam giác AEm (c.huyền - g.nhọn)
=>MD = ME (cặp cạnh t/ứng )
AD = AE (cặp cạnh t/ứng )
Xét tam giác MDB và tam giác MEC có :
MB = MC (gt)
góc MDB = góc MEC = 90 độ
MD = ME ( câu a)
=>Tam giác MDB = Tam giác MEC (c.huyền-c.g.vuông)
Vì AD + DB = AB
AE + EC = AC
Mà AD = AE
DB = EC
=>AB = AC
Xét tam giác ABM và tam giác ACM có
AM chung
góc BAM = góc CAM (gt)
AB = AC (CMT)
=>Tam giác ABM = Tam giác ACM (c.huyền-g.nhon)
Vậy có 3 cặp tam giác bằng nhau
a) Ta có: \(\widehat{BEC}\) là góc ngoài tại đỉnh E của ΔABE
nên \(\widehat{BEC}=\widehat{A}+\widehat{ABE}=90^0+\widehat{ABE}>90^0\)
hay \(\widehat{BEC}\) là góc tù
b) \(\widehat{BEA}=180^0-110^0=70^0\)
\(\Leftrightarrow\widehat{ABE}=20^0\)
\(\Leftrightarrow\widehat{ABC}=40^0\)
\(\Leftrightarrow\widehat{ACB}=50^0\)