\(\varepsilon\)Z, thỏa mãn: xy - 2x + 3y = 13

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2018

\(xy-2x+3y=13\)

\(x\left(y-2\right)+3y-6=13-6\)

\(x\left(y-2\right)+3\left(y-2\right)=7\)

\(\left(y-2\right)\left(x+3\right)=7\)

\(\Rightarrow\left(y-2\right);\left(x+3\right)\in\text{Ư}\left(7\right)=\left\{\pm1;\pm7\right\}\)

Lập bảng giá trị

x+31-17-7
y-27-71-1
x-2-44-10
y9-531

Vậy có các cặp số (x;y) là: (-2;9);(-4;-5);(4;3);(-10;1)

Tham khảo nhé~

15 tháng 7 2018

\(xy-2x+3y=13\Leftrightarrow x\left(y-2\right)+3y-6=7\)

\(\Leftrightarrow x\left(y-2\right)+3\left(y-2\right)=7\Leftrightarrow\left(y-2\right)\left(x+3\right)=7\)

Tự làm tiếp nha !

13 tháng 3 2020

Vì \(|2x-5|\ge0,\forall x\)

\(|xy-3y+2|\ge0,\forall x,y\)

\(\Rightarrow|2x-5|+\)\(|xy-3y+2|\ge0,\forall x,y\) (1)

MÀ \(|2x-5|+\)\(|xy-3y+2|=0\)(2)

Từ (1) và (2) suy ra \(|2x-5|=0\)và  \(|xy-3y+2|=0\)

suy ra x=5/2 và y=4

+)Ta có:\(\left|2x-5\right|\ge0;\left|xy-3y+2\right|\ge0\)

\(\Rightarrow\left|2x-5\right|+\left|xy-3y+2\right|\ge0\)

Mà \(\left|2x-5\right|+\left|xy-3y+2\right|=0\)

\(\Rightarrow\left|2x-5\right|=\left|xy-3y+2\right|=0\)

\(\Rightarrow2x-5=0;xy-3y+2=0\)

\(\Rightarrow2x=5\)      \(\Rightarrow\left(x-3\right)y=-2\)

\(\Rightarrow x=\frac{5}{2}=2,5\)\(\Rightarrow-2⋮y\)

                                  \(\Rightarrow y\inƯ\left(-2\right)=\left\{\pm1;\pm2\right\}\)

                                     \(\Rightarrow x-3\in\left\{\pm2;\pm1\right\}\)

                                        \(\Rightarrow x\in\left\{1;5;2;4\right\}\)

Vậy x=2,5;\(\left(x,y\right)\in\left\{\left(-1;1\right);\left(1;5\right);\left(-2;2\right);\left(2;4\right)\right\}\)

Chúc bn học tốt

9 tháng 11 2016

Ta có: \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}=\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}\)

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=\frac{49}{\frac{49}{12}}=49.\frac{12}{49}=12\)

\(\Rightarrow\begin{cases}x=12.\frac{3}{2}=18\\y=12.\frac{4}{3}=16\\z=12.\frac{5}{4}=15\end{cases}\)

Vậy x = 18; y = 16; z = 15

9 tháng 11 2016

Giải:
Ta có: \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\Rightarrow\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=\frac{49}{\frac{49}{12}}=12\)

+) \(\frac{x}{\frac{3}{2}}=12\Rightarrow x=18\)

+) \(\frac{y}{\frac{4}{3}}=12\Rightarrow y=16\)

+) \(\frac{z}{\frac{5}{4}}=12\Rightarrow z=15\)

Vậy bộ số \(\left(x,y,z\right)\)\(\left(18,16,15\right)\)

10 tháng 10 2018

đé* biết ok

22 tháng 3 2016

\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2\left(x-1\right)}{4}=\frac{3\left(y-2\right)}{9}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{2x+3y-z-5}{9}=\frac{90}{9}=10\)

=> x-1 = 10.2 = 20 => x= 21

    y-2 = 10.3 = 30 => y = 32

    z-3 = 10.4 =40 => z = 43

21 tháng 9 2020

\(\hept{\begin{cases}\frac{4x}{5}=\frac{3y}{2}\\\frac{4y}{5}=\frac{5z}{3}\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{\frac{5}{4}}=\frac{y}{\frac{2}{3}}\\\frac{y}{\frac{5}{4}}=\frac{z}{\frac{3}{5}}\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{\frac{5}{4}}\times\frac{1}{\frac{3}{2}}=\frac{y}{\frac{2}{3}}\times\frac{1}{\frac{3}{2}}\\\frac{y}{\frac{5}{4}}\times\frac{1}{\frac{4}{5}}=\frac{z}{\frac{3}{5}}\times\frac{1}{\frac{4}{5}}\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{\frac{15}{8}}=\frac{y}{1}\\\frac{y}{1}=\frac{z}{\frac{12}{25}}\end{cases}}\Rightarrow\frac{x}{\frac{15}{8}}=\frac{y}{1}=\frac{z}{\frac{12}{25}}\)

2x - 3y + 4z = 5, 34

=> \(\frac{2x}{\frac{15}{4}}=\frac{3y}{3}=\frac{4z}{\frac{48}{25}}\)và 2x - 3y + 4z = 5, 34

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{2x}{\frac{15}{4}}=\frac{3y}{3}=\frac{4z}{\frac{48}{25}}=\frac{2x-3y+4z}{\frac{15}{4}-3+\frac{48}{25}}=\frac{5,34}{\frac{267}{100}}=2\)

\(\Rightarrow\hept{\begin{cases}x=2\cdot\frac{15}{8}=\frac{15}{4}\\y=2\cdot1=2\\z=2\cdot\frac{12}{25}=\frac{24}{25}\end{cases}}\)

Vậy ...

b) \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)và 2x + 3y - z = 50

=> \(\frac{2\left(x-1\right)}{4}=\frac{3\left(y-2\right)}{9}=\frac{z-3}{4}\)

=> \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)và 2x + 3y - z = 50

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(...=\frac{2x-2+3y-6-\left(z-3\right)}{4+9-4}=\frac{2x-2+3y-6-z+3}{9}=\frac{50-2-6+3}{9}=\frac{45}{9}=5\)

\(\frac{x-1}{2}=5\Rightarrow x-1=10\Rightarrow x=11\)

\(\frac{y-2}{3}=5\Rightarrow y-2=15\Rightarrow y=17\)

\(\frac{z-3}{4}=5\Rightarrow z-3=20\Rightarrow z=23\)

Vậy ...