![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\left(x-3\right).\left(x^2+3x+9\right)-x.\left(x+4\right)\left(x-4\right)=21\)
\(\Leftrightarrow x^3-27-x.\left(x^2-16\right)=21\) \(\Leftrightarrow x^3-27-x^3+16x=21\)
\(\Leftrightarrow16x=21+27\) \(\Leftrightarrow16x=48\) \(\Leftrightarrow x=3\)
b) \(\left(x+2\right)\left(x^2-2x+4\right)-x.\left(x^2+2\right)=4\)
\(\Leftrightarrow x^3+8-x^3-2x=4\) \(\Leftrightarrow-2x=4-8\) \(\Leftrightarrow-2x=-4\) \(\Leftrightarrow x=2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a,\(A=\left(\frac{2x-x^2}{2\left(x^2+4\right)}-\frac{2x^2}{\left(x^2+4\right)\left(x-2\right)}\right)\left(\frac{2x+x^2\left(1-x\right)}{x^3}\right)\left(ĐKXĐ:x\ne2;x\ne0\right)\)
\(A=\frac{\left(2x-x^2\right)\left(x-2\right)-4x^2}{2\left(x^2+4\right)\left(x-2\right)}.\frac{-x^3+x^2+2x}{x^3}\)
\(=\frac{-x^3-4x}{2\left(x^2+4\right)\left(x-2\right)}.\frac{x^2-x-2}{-x^2}\)
\(=\frac{-x\left(x^2+4\right)}{2\left(x^2+4\right)\left(x-2\right)}.\frac{\left(x-2\right)\left(x+1\right)}{-x^2}=\frac{x+1}{2x}\)
b, \(A=x\Leftrightarrow\frac{x+1}{2x}=x\Rightarrow2x^2=x+1\Leftrightarrow2x^2-x-1=0\)
\(\Leftrightarrow\left(2x+1\right)\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=1\end{cases}}\)(thỏa mãn điều kiện)
c, \(A\in Z\Leftrightarrow\frac{x+1}{2x}\in Z\Leftrightarrow x+1⋮\left(2x\right)\)
\(\Leftrightarrow2x+2⋮2x\Leftrightarrow2⋮2x\Leftrightarrow1⋮x\Leftrightarrow x=\pm1\) (thỏa mãn ĐKXĐ)
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu hỏi của headsot96 - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo nhé!
![](https://rs.olm.vn/images/avt/0.png?1311)
a)
Để A nguyên \(\Leftrightarrow x^3+x⋮x-1\)
\(\Leftrightarrow x^3-1+x+1⋮x-1\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+x+1\right)+x+1⋮x-1\left(1\right)\)
Vì x nguyên \(\Rightarrow\hept{\begin{cases}x-1\in Z\\x^2+x+1\in Z\end{cases}}\)
\(\Rightarrow\left(x-1\right)\left(x^2+x+1\right)⋮x-1\left(2\right)\)
Từ (1) và (2) \(\Rightarrow x+1⋮x-1\)
\(\Leftrightarrow x-1+2⋮x-1\)
Mà \(x-1⋮x-1\)
\(\Rightarrow2⋮x-1\)
\(\Rightarrow x-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
\(\Rightarrow x\in\left\{-1;0;2;3\right\}\)
Vậy \(x\in\left\{-1;0;2;3\right\}\)
b) Để B nguyên \(\Leftrightarrow x^2-4x+5⋮2x-1\)
\(\Leftrightarrow2x^2-8x+10⋮2x-1\)
\(\Leftrightarrow\left(2x^2-x\right)-\left(6x-3\right)-\left(x-7\right)⋮2x-1\)
\(\Leftrightarrow x\left(2x-1\right)-3\left(2x-1\right)-\left(x-7\right)⋮2x-1\)
\(\Leftrightarrow\left(2x-1\right)\left(x-3\right)-\left(x-7\right)⋮2x-1\left(1\right)\)
Vì x nguyên \(\Rightarrow\hept{\begin{cases}2x-1\in Z\\x-3\in Z\end{cases}}\)
\(\Rightarrow\left(2x-1\right)\left(x-3\right)⋮2x-1\left(2\right)\)
Từ (1) và(2) \(\Rightarrow x-7⋮2x-1\)
\(\Leftrightarrow2x-14⋮2x-1\)
\(\Leftrightarrow2x-1-13⋮2x-1\)
Mà \(2x-1⋮2x-1\)
\(\Rightarrow13⋮2x-1\)
\(\Rightarrow2x-1\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\)
Làm nốt nha các phần còn lại bạn cứ dựa bài mình mà làm
![](https://rs.olm.vn/images/avt/0.png?1311)
a) ( x + 2 )( x + 3 ) - ( x - 2 )( x + 5 ) = 16
<=> x2 + 5x + 6 - ( x2 + 3x - 10 ) = 16
<=> x2 + 5x + 6 - x2 - 3x + 10 = 16
<=> 2x + 16 = 16
<=> 2x = 0
<=> x = 0
b) 3x( 2x - 4 ) - 2x( 3x + 5 ) = 44
<=> 6x2 - 12x - 6x2 - 10x = 44
<=> -22x = 44
<=> x = -2
c) 2( 5x - 8 - 3 )( 4x - 5 ) = 4( 3x - 4 )
<=> 2( 5x - 11 )( 4x - 5 ) = 4( 3x - 4 )
<=> 2( 20x2 - 69x + 55 ) = 12x - 16
<=> 40x2 - 138x + 110 = 12x - 16
<=> 40x2 - 138x + 110 - 12x + 16 = 0
<=> 40x2 - 150 + 126 = 0 ( chưa học nghiệm vô tỉ nên để vô nghiệm nha :) )
=> Vô nghiệm
4-x+2x=3
<=>-x+2x=3-4
<=>x=-1