K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2019

Ta có: \(\sqrt{7}< \sqrt{9}\)\(\sqrt{15}< \sqrt{16}\)

\(\Rightarrow\sqrt{7}+\sqrt{15}< \sqrt{9}+\sqrt{16}=3+4=7\)

11 tháng 12 2021

\(\Leftrightarrow\dfrac{2m+3}{5}=\dfrac{5m+2}{3}\\ \Leftrightarrow6m+9=25m+10\\ \Leftrightarrow19m=-1\Leftrightarrow m=-\dfrac{1}{19}\)

11 tháng 12 2021

mik cảm ơn bn nhìu nha

a: Xét ΔAHB vuông tại H có HM là đường cao

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HN là đường cao

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

hay \(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)

Xét ΔAMN vuông tại A và ΔACB vuông tại A có 

\(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)

Do đó: ΔAMN\(\sim\)ΔACB

a: \(VT=\left(\dfrac{\sqrt{7}\left(\sqrt{2}-1\right)}{2\left(\sqrt{2}-1\right)}+\dfrac{\sqrt{5}\left(\sqrt{3}-1\right)}{2\left(\sqrt{3}-1\right)}\right)\cdot\left(\sqrt{7}-\sqrt{5}\right)\)

\(=\left(\dfrac{\sqrt{7}+\sqrt{5}}{2}\right)\cdot\left(\sqrt{7}-\sqrt{5}\right)=\dfrac{7-5}{2}=\dfrac{2}{2}=1\)

=VP

b: \(VT=3-\sqrt{5}+2\left(\sqrt{5}+1\right)-\left|\sqrt{5}-2\right|\)

=3-căn 5+2căn 5+2-căn 5+2

=3+2+2=7

=VP

1 tháng 8 2023

Camun đại ka!!

a: \(Q=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)-2\sqrt{x}\left(\sqrt{x}-2\right)-5\sqrt{x}-2}{x-4}:\dfrac{\sqrt{x}\left(3-\sqrt{x}\right)}{\left(\sqrt{x}+2\right)^2}\)

\(=\dfrac{x+3\sqrt{x}+2-2x+4\sqrt{x}-5\sqrt{x}-2}{x-4}\cdot\dfrac{\left(\sqrt{x}+2\right)^2}{\sqrt{x}\left(3-\sqrt{x}\right)}\)

\(=\dfrac{-x+2\sqrt{x}}{\sqrt{x}-2}\cdot\dfrac{\sqrt{x}+2}{\sqrt{x}\left(3-\sqrt{x}\right)}\)

\(=\dfrac{-\sqrt{x}\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)\cdot\left(-1\right)}\cdot\dfrac{\sqrt{x}+2}{\sqrt{x}-3}=\dfrac{\sqrt{x}+2}{\sqrt{x}-3}\)

b: Khi x=4-2căn 3 thì \(Q=\dfrac{\sqrt{3}-1+2}{\sqrt{3}-1-3}=\dfrac{\sqrt{3}+1}{\sqrt{3}-4}=\dfrac{-7-5\sqrt{3}}{13}\)

c: Q>1/6

=>Q-1/6>0

=>\(\dfrac{\sqrt{x}+2}{\sqrt{x}-3}-\dfrac{1}{6}>0\)

=>\(\dfrac{6\sqrt{x}+12-\sqrt{x}+3}{6\left(\sqrt{x}-3\right)}>0\)

=>\(\dfrac{5\sqrt{x}+9}{6\left(\sqrt{x}-3\right)}>0\)

=>căn x-3>0

=>x>9

20 tháng 6 2021

Xét A = \(\sqrt{x}-3+\dfrac{36}{\sqrt{x}-3}+3\)

Áp dụng BDT Co-si, ta có:

\(\left(\sqrt{x}-3\right)+\dfrac{36}{\sqrt{x}-3}\ge2\sqrt{\left(\sqrt{x}-3\right).\dfrac{36}{\sqrt{x}-3}}\) = 12

=> A  \(\ge15\)

Dấu "=" xảy ra <=> x = 81

20 tháng 6 2021

`5)A=sqrtx+36/(sqrtx-3)`

`A=sqrtx-3+36/(sqrtx-3)+3`

ÁP dụng bđt cosi ta có:

`sqrtx-3+36/(sqrtx-3)>=2sqrt{36}=12`

`=>A>=12+3=15`

Dấu "=" xảy ra khi `sqrtx-3=36/(sqrtx-3)`

`<=>(sqrtx-3)^2=36`

`<=>sqrtx-3=6`

`<=>sqrtx=9`

`<=>x=81`

Không có Max.

20 tháng 6 2021

\(A=\sqrt{x}-3+\dfrac{36}{\sqrt{x}-3}+3\)

Theo BĐT Cô Si ta có:

\(\sqrt{x}-3+\dfrac{36}{\sqrt{x}-3}\ge2\sqrt{\sqrt{x}-3.\dfrac{36}{\sqrt{x}-3}}\)

\(\sqrt{x}-3+\dfrac{36}{\sqrt{x}-3}\ge12\)

\(A\ge12+3\)

\(A\ge15\)

\(Min_A=15\)

Dấu = xảy ra khi và chỉ khi : \(\sqrt{x}-3=\dfrac{36}{\sqrt{x}-3}\)

\(\left(\sqrt{x}-3\right)^2=36\)

\(\sqrt{x}-3=6\)

\(\sqrt{x}=9\)

\(x=81\)