K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2023

(\(x\) - 2023)\(x-2024\) = 1

⇒ \(\left[{}\begin{matrix}x\ne2023;x-2024=0\\x-2023=1\end{matrix}\right.\)

⇒ \(\left[{}\begin{matrix}x=2024\\x=2024\end{matrix}\right.\)

Vậy \(x=2024\)

19 tháng 8 2023

(x - 2023)ˣ⁻²⁰²⁴ = 1

(x - 2023)ˣ⁻²⁰²⁴ = (x - 2023)⁰ (x ≠ 2023)

x - 2024 = 0

x = 2024 (nhận)

Vậy x = 2024

14 tháng 10 2023

a)

\(175\cdot19+38\cdot175+43\cdot175\\ =175\cdot19+175\cdot38+175\cdot43\\ =175\cdot\left(19+38+43\right)\\ =175\cdot100\\ =17500\)

b)

\(125\cdot75+125\cdot13-80\cdot125\\ =125\cdot75+125\cdot13-125\cdot80\\ =125\cdot\left(75+13-80\right)\\ =125\cdot10\\ =125\cdot8\\ =1000\)

14 tháng 10 2023

a, 175. 19 + 38. 175 + 43. 175

= 175. 19 + 175. 38 + 175. 43

= 175.(19 + 38 + 43)

= 175. 100

= 17500 

27 tháng 8

Bài 3:

4; 45 + 5\(x\) = 10\(^3\): 10

45 + 5\(x\) = 100

5\(x\) = 100 - 45

5\(x\) = 55

\(x\) = 55 : 5

\(x\) = 11

Vậy \(x=11\)

5; 4\(x\) - 20 = 2\(^5\) : 2\(^2\)

4\(x\) - 20 = 2\(^3\)

4\(x\) = 8 + 20

4\(x\) = 28

\(x\) = 28 : 4

\(x=7\)

Vậy \(x=7\)

27 tháng 8

Bài 4:

1; 82 - (25 + 4\(x^{}\)) = 17

25 + 4\(x\) \(^{}\) = 82 - 17

4\(x^{}\) = 65 - 25

4\(x^{}\) = 40

\(x=40:4\)

\(x\) = 10

Vậy \(x=10\)

2; 71 - (24 + 3\(x\)) = 24

24 + 3\(x\) = 71 - 24

24 + 3\(x\) = 47

3\(x\) = 47 - 24

3\(x\) = 23

\(x\) = 23 : 3

Vậy \(x=\frac{23}{3}\)

3; 145 - (125 + \(x\)) = 12

125 + \(x\) = 145 - 12

125 + \(x\) = 133

\(x\) = 133 - 125

\(x\) = 8

Vậy \(x=8\)

bài 3:

a: \(C=5+5^2+5^3+\cdots+5^{20}\)

\(=5\left(1+5+5^2+\cdots+5^{19}\right)\) ⋮5

b: \(C=5+5^2+5^3+\cdots+5^{20}\)

\(=\left(5+5^2\right)+\left(5^3+5^4\right)+\cdots+\left(5^{19}+5^{20}\right)\)

\(=5\left(1+5\right)+5^3\left(1+5\right)+\cdots+5^{19}\left(1+5\right)\)

\(=6\left(5+5^3+\cdots+5^{19}\right)\) ⋮6

c: \(C=5+5^2+5^3+\cdots+5^{20}\)

\(=\left(5+5^2+5^3+5^4\right)+\left(5^5+5^6+5^7+5^8\right)+\cdots+\left(5^{17}+5^{18}+5^{19}+5^{20}\right)\)

\(=5\left(1+5+5^2+5^3\right)+5^5\left(1+5+5^2+5^3\right)+\cdots+5^{17}\left(1+5+5^2+5^3\right)\)

\(=\left(1+5+5^2+5^3\right)\left(5+5^5+\cdots+5^{17}\right)=156\cdot\left(5+5^5+\cdots+5^{17}\right)\)

\(=13\cdot12\cdot\left(5+5^5+\cdots+5^{17}\right)\) ⋮13

Bài 2:

a: \(B=3+3^2+3^3+\cdots+3^{120}\)

\(=3\left(1+3+3^2+3^3+\cdots+3^{119}\right)\) ⋮3

b: \(B=3+3^2+3^3+\cdots+3^{120}\)

\(=\left(3+3^2\right)+\left(3^3+3^4\right)+\cdots+\left(3^{119}+3^{120}\right)\)

\(=3\left(1+3\right)+3^3\left(1+3\right)+\cdots+3^{119}\left(1+3\right)\)

\(=4\left(3+3^3+\cdots+3^{119}\right)\) ⋮4

c: \(B=3+3^2+3^3+\cdots+3^{120}\)

\(=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+\cdots+\left(3^{118}+3^{119}+3^{120}\right)\)

\(=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+\cdots+3^{118}\left(1+3+3^2\right)\)

\(=13\left(3+3^4+\cdots+3^{118}\right)\) ⋮13

Bài 1:

a: \(A=2+2^2+2^3+\ldots+2^{20}\)

\(=2\left(1+2+2^2+\cdots+2^{19}\right)\) ⋮2

b: \(A=2+2^2+2^3+\ldots+2^{20}\)

\(=\left(2+2^2\right)+\left(2^3+2^4\right)+\cdots+\left(2^{19}+2^{20}\right)\)

\(=2\left(1+2\right)+2^3\left(1+2\right)+\cdots+2^{19}\left(1+2\right)\)

\(=3\left(2+2^3+\cdots+2^{19}\right)\) ⋮3

c: \(A=2+2^2+2^3+\ldots+2^{20}\)

\(=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+\cdots+\left(2^{17}+2^{18}+2^{19}+2^{20}\right)\)

\(=2\left(1+2+2^2+2^3\right)+2^5\left(1+2+2^2+2^3\right)+\cdots+2^{17}\left(1+2+2^2+2^3\right)\)

\(=15\left(2+2^5+\ldots+2^{17}\right)=5\cdot3\cdot\left(2+2^5+\cdots+2^{17}\right)\) ⋮5

23 tháng 8

Bài 1:

a; A = 2 + \(2^2\) + 2\(^3\) + ... + 2\(^{20}\)

A = 2 x (1+ 2+ 2\(^2\) + ... + 2\(^{19}\))

A ⋮ 2(đpcm)

b; A = 2 + \(2^2\) + 2\(^3\) + ... + 2\(^{20}\)

Xét dãy số: 1; 2;...; 20 đây là dãy số cách đều với khoảng cách là:

2 - 1 = 1

Số số hạng của dãy số trên là:

(20 - 1) : 1+ 1 = 20(số)

Vì 20 : 2 = 10

Vậy nhóm hai số hạng liên tiếp của A vào nhau khi đó ta có:

A = (2+ 2\(^2\)) + (2\(^3\) + 2\(^4\)) + ... + (2\(^{19}+\) 2\(^{20}\))

A = 2.(1 + 2) + 2\(^3\).(1+ 2) + ... + 2\(^{19}\) .(1 + 2)

A = 2.3 + 2\(^3\).3 + ... + 2\(^{19}\).3

A = 3.(2+ 2\(^3\) + ... + 2\(^{19}\))

A ⋮ 3 (đpcm)

c; A = 2 + \(2^2\) + 2\(^3\) + ... + 2\(^{20}\)

Xét dãy số: 1; 2; 3;...; 20

Dãy số trên có 20 số hạng:

Vì 20 : 4 = 5

Vậy nhóm 4 hạng tử của A thành một nhóm khi đó:

A = (2+ 2\(^2\) + 2\(^3\) + 2\(^4\)) + ... + (2\(^{17}+2^{18}+2^{19}+2^{20}\))

A = 2.(1 + 2 + 2\(^2\) + 2\(^3\)) + ... + 2\(^{17}\).(1 + 2 + 2\(^2\) + 2\(^3\))

A = (1+ 2 +2\(^2\) + 2\(^3\)).(2+ ...+ 2\(^{17}\))

A = (1 + 2 + 4 + 8).(2+ ...+ 2\(^{17}\))

A = (3+ 4 + 8).(2+ ...+ 2\(^{17}\))

A = (7 + 8)(2+ ...+ 2\(^{17}\))

A = 15.(2+ ...+ 2\(^{17}\))

A ⋮ 5(đpcm)


Bài 23:

a+4b⋮13

=>10(a+4b)⋮13

=>10a+40b⋮13

=>10a+b+39b⋮13

mà 39b⋮13

nên 10a+b⋮13

27 tháng 8

bạn nên chụp rõ hơn để lời giải có kết quả tốt nhất nhé bạn!

Câu 8:

a:Sửa đề: \(4+4^2+\cdots+4^{2025}\)

Ta có: \(4+4^2+\cdots+4^{2025}\)

\(=\left(4+4^2+4^3\right)+\left(4^4+4^5+4^6\right)+\cdots+\left(4^{2023}+4^{2024}+4^{2025}\right)\)

\(=4\left(1+4+4^2\right)+4^4\left(1+4+4^2\right)+\cdots+4^{2023}\left(1+4+4^2\right)\)

\(=21\left(4+4^4+\cdots+4^{2023}\right)\) ⋮21

b: \(5+5^2+5^3+5^4+\cdots+5^{2024}\)

\(=\left(5+5^2\right)+\left(5^3+5^4\right)+\cdots+\left(5^{2023}+5^{2024}\right)\)

\(=\left(5+5^2\right)+5^2\left(5+5^2\right)+\cdots+5^{2022}\left(5+5^2\right)\)

\(=30\left(1+5^2+\cdots+5^{2022}\right)\) ⋮30

Câu 7:

a: \(A=2+2^2+2^3+\cdots+2^{99}\)

=>\(2A=2^2+2^3+\cdots+2^{100}\)

=>\(2A-A=2^2+2^3+\cdots+2^{100}-2-2^2-\cdots-2^{99}\)

=>\(A=2^{100}-2\)

b: \(B=1-7+7^2-7^3+\cdots+7^{48}-7^{49}\)

=>\(7B=7-7^2+7^3-7^4+\cdots+7^{49}-7^{50}\)

=>\(7B+B=7-7^2+7^3-7^4+\cdots+7^{49}-7^{50}+1-7+7^2-7^3+\cdots+7^{48}-7^{49}\)

=>\(8B=-7^{50}+1\)

=>\(B=\frac{-7^{50}+1}{8}\)

Câu 4:

a: \(x^3=125\)

=>\(x^3=5^3\)

=>x=5

b: \(11^{x+1}=121\)

=>\(11^{x+1}=11^2\)

=>x+1=2

=>x=2-1=1

c: \(\left(x-5\right)^3=27\)

=>\(\left(x-5\right)^3=3^3\)

=>x-5=3

=>x=3+5=8

d: \(4^5:4^{x}=16\)

=>\(4^{x}=4^5:16=4^5:4^2=4^3\)

=>x=3

e: \(5^{x-1}\cdot8=1000\)

=>\(5^{x-1}=1000:8=125=5^3\)

=>x-1=3

=>x=3+1=4

f: \(2^{x}+2^{x+3}=72\)

=>\(2^{x}+2^{x}\cdot8=72\)

=>\(2^{x}\cdot9=72\)

=>\(2^{x}=\frac{72}{9}=8=2^3\)

=>x=3

g: \(\left(3x+1\right)^3=343\)

=>\(\left(3x+1\right)^3=7^3\)

=>3x+1=7

=>3x=6

=>x=2

h: \(3^{x}+3^{x+2}=270\)

=>\(3^{x}+3^{x}\cdot9=270\)

=>\(10\cdot3^{x}=270\)

=>\(3^{x}=\frac{270}{10}=27=3^3\)

=>x=3

i: \(25^{2x+4}=125^{x+3}\)

=>\(\left(5^2\right)^{2x+4}=\left(5^3\right)^{x+3}\)

=>\(5^{4x+8}=5^{3x+9}\)

=>4x+8=3x+9

=>x=1

Câu 6:

1 giờ=3600 giây

Số tế bào hồng cầu được tạo ra sau mỗi giờ là:

\(25\cdot10^5\cdot3600=25\cdot36\cdot10^7=900\cdot10^7=9\cdot10^9\) =9 tỉ (tế bào)

S
28 tháng 8

câu 5:

a. \(16^{16}=\left(2^4\right)^{16}=2^{64}\)

\(64^{11}=\left(2^6\right)^{11}=2^{66}\)

\(2^{66}>2^{64}\) nên \(64^{11}>16^{16}\)

b. \(625^5=\left(5^4\right)^5=5^{20}\)

\(125^7=\left(5^3\right)^7=5^{21}\)

\(5^{20}<5^{21}\Rightarrow625^5<125^7\)

c. \(3^{36}=\left(3^3\right)^{12}=27^{12}\)

\(5^{24}=\left(5^2\right)^{12}=25^{12}\)

\(27^{12}>25^{12}\Rightarrow3^{36}>5^{24}\)

Ta có: \(10A=\frac{10^{21}-60}{10^{21}-6}=\frac{10^{21}-6-54}{10^{21}-6}=1-\frac{54}{10^{21}-6}\)

\(10B=\frac{10^{22}-60}{10^{22}-6}=\frac{10^{22}-6-54}{10^{22}-6}=1-\frac{54}{10^{22}-6}\)

Ta có: \(10^{21}-6<10^{22}-6\)

=>\(\frac{54}{10^{21}-6}>\frac{54}{10^{22}-6}\)

=>\(-\frac{54}{10^{21}-6}<-\frac{54}{10^{22}-6}\)

=>\(-\frac{54}{10^{21}-6}+1<-\frac{54}{10^{22}-6}+1\)

=>10A<10B

=>A<B

S
17 tháng 8

a) diện tích △ ADG là:

20 x 9 : 2 = 90 (cm2)

diện tích △ ABE là:

14 x 8 : 2 = 56 (cm2)

diện tích hình chữ nhật ABCD là:

20 x 14 = 280 (cm2)

diện tích tứ giác AECG là:

280 - 56 - 90 = 134 (cm2)

b) tỉ số diện tích △ ABE và diện tích △ ADG là:

\(\frac{56}{90}=\frac{28}{45}\)

Câu 8:

a:Sửa đề: \(4+4^2+\cdots+4^{2025}\)

Ta có: \(4+4^2+\cdots+4^{2025}\)

\(=\left(4+4^2+4^3\right)+\left(4^4+4^5+4^6\right)+\cdots+\left(4^{2023}+4^{2024}+4^{2025}\right)\)

\(=4\left(1+4+4^2\right)+4^4\left(1+4+4^2\right)+\cdots+4^{2023}\left(1+4+4^2\right)\)

\(=21\left(4+4^4+\cdots+4^{2023}\right)\) ⋮21

b: \(5+5^2+5^3+5^4+\cdots+5^{2024}\)

\(=\left(5+5^2\right)+\left(5^3+5^4\right)+\cdots+\left(5^{2023}+5^{2024}\right)\)

\(=\left(5+5^2\right)+5^2\left(5+5^2\right)+\cdots+5^{2022}\left(5+5^2\right)\)

\(=30\left(1+5^2+\cdots+5^{2022}\right)\) ⋮30

Câu 7:

a: \(A=2+2^2+2^3+\cdots+2^{99}\)

=>\(2A=2^2+2^3+\cdots+2^{100}\)

=>\(2A-A=2^2+2^3+\cdots+2^{100}-2-2^2-\cdots-2^{99}\)

=>\(A=2^{100}-2\)

b: \(B=1-7+7^2-7^3+\cdots+7^{48}-7^{49}\)

=>\(7B=7-7^2+7^3-7^4+\cdots+7^{49}-7^{50}\)

=>\(7B+B=7-7^2+7^3-7^4+\cdots+7^{49}-7^{50}+1-7+7^2-7^3+\cdots+7^{48}-7^{49}\)

=>\(8B=-7^{50}+1\)

=>\(B=\frac{-7^{50}+1}{8}\)

S
28 tháng 8

câu 4:

a) \(\)x³ = 125

x³ = 5³

⇒ x = 5

b. \(11^{x+1}=121\)

\(11^{x+1}=11^2\)

⇒ x + 1 = 2

⇒ x = 2 - 1 = 1

c. (x - 5)³ = 27

(x - 5)³ = 3³

⇒ x - 5 = 3

x = 3 + 5 = 8

d. \(4^5:4^{x}=16\)

\(4^{5-x}=4^2\)

⇒ 5 - x = 2

x = 5 - 2 = 3

e. \(5^{x-1}\cdot8=1000\)

\(5^{x-1}=1000:8\)

\(5^{x-1}=125\)

\(5^{x-1}=5^3\)

⇒ x - 1 = 3

x = 3 + 1 = 4

f. \(2^{x}+2^{x+3}=72\)

\(2^{x}\cdot\left(1+2^3\right)=72\)

\(2^{x}=72:9\)

\(2^{x}=8\)

\(2^{x}=2^3\)

⇒ x = 3

g. (3x + 1)³ = 343

(3x + 1)³ = 7³

⇒ 3x + 1 = 7

3x = 7 - 1

3x = 6

x = 6 : 3 = 2

h. \(3^{x}+3^{x+2}=270\)

\(3^{x}\cdot\left(1+3^2\right)=270\)

\(3^{x}=270:10\)

\(3^{x}=27\)

\(3^{x}=3^3\)

⇒ x = 3

i. \(25^{2x+4}=125^{x+3}\)

\(\left(5^2\right)^{2x+4}=\left(5^3\right)^{x+3}\)

\(5^{4x+8}=5^{3x+9}\)

=>4x + 8 = 3x + 9

4x - 3x = 9 - 8

x = 1

Bài 8:

a: \(5^3=125;3^5=243\)

mà 125<243

nên \(5^3<3^5\)

b: \(7\cdot2^{13}<8\cdot2^{13}=2^3\cdot2^{13}=2^{16}\)

c: \(27^5=\left(3^3\right)^5=3^{3\cdot5}=3^{15}\)

\(243^3=\left(3^5\right)^3=3^{5\cdot3}=3^{15}\)

Do đó: \(27^5=243^5\)

d: \(625^5=\left(5^4\right)^5=5^{4\cdot5}=5^{20}\)

\(125^7=\left(5^3\right)^7=5^{3\cdot7}=5^{21}\)

mà 20<21

nên \(625^5<125^7\)

Bài 9:

a: \(3^{x}\cdot5=135\)

=>\(3^{x}=\frac{135}{5}=27=3^3\)

=>x=3(nhận)

b: \(\left(x-3\right)^3=\left(x-3\right)^2\)

=>\(\left(x-3\right)^3-\left(x-3\right)^2=0\)

=>\(\left(x-3\right)^2\cdot\left\lbrack\left(x-3\right)-1\right\rbrack=0\)

=>\(\left(x-3\right)^2\cdot\left(x-4\right)=0\)

=>\(\left[\begin{array}{l}x-3=0\\ x-4=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=3\left(nhận\right)\\ x=4\left(nhận\right)\end{array}\right.\)

c: \(\left(2x-1\right)^4=81\)

=>\(\left[\begin{array}{l}2x-1=3\\ 2x-1=-3\end{array}\right.\Rightarrow\left[\begin{array}{l}2x=4\\ 2x=-2\end{array}\right.\Rightarrow\left[\begin{array}{l}x=2\left(nhận\right)\\ x=-1\left(loại\right)\end{array}\right.\)

d: \(\left(5x+1\right)^2=3^2\cdot5+76\)

=>\(\left(5x+1\right)^2=9\cdot5+76=45+76=121\)

=>\(\left[\begin{array}{l}5x+1=11\\ 5x+1=-11\end{array}\right.\Rightarrow\left[\begin{array}{l}5x=10\\ 5x=-12\end{array}\right.\Rightarrow\left[\begin{array}{l}x=2\left(nhận\right)\\ x=-\frac{12}{5}\left(loại\right)\end{array}\right.\)

e: \(5+2^{x-3}=29-\left\lbrack4^2-\left(3^2-1\right)\right\rbrack\)

=>\(2^{x-3}+5=29-\left\lbrack16-9+1\right\rbrack\)

=>\(2^{x-3}+5=29-8=21\)

=>\(2^{x-3}=16=2^4\)

=>x-3=4

=>x=4+3=7(nhận)

f: \(3+2^{x-1}=24-\left\lbrack4^2-\left(2^2-1\right)\right\rbrack\)

=>\(2^{x-1}+3=24-\left\lbrack16-4+1\right\rbrack=24-13=11\)

=>\(2^{x-1}=11-3=8=2^3\)

=>x-1=3

=>x=4(nhận)

Bài 6:

a: \(5\cdot5\cdot5\cdot5\cdot5\cdot5=5^6\)

b: \(27\cdot14\cdot7\cdot2=27\cdot14\cdot14=3^3\cdot14^2\)

c: \(x\cdot x\cdot x\cdot y=x^3\cdot y\)

d: \(5^3\cdot5^4=5^{3+4}=5^7\)

e: \(7^8:7^2=7^{8-2}=7^6\)

f: \(42^7:6^7\cdot49=7^7\cdot49=7^7\cdot7^2=7^{7+2}=7^9\)