![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
x2-4x=0
<=> x(x-4)=0
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}}\)
Vậy x=0; x=4
Câu này rất dễ theo đề bài x2 là x nhân x có nghĩa x nhân chính nó vậy ta có luôn x bằng 4 vì 4 nhân 4 trừ đi 42 bằng 0
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left|x+4\right|=2x-5\)
\(\Leftrightarrow\orbr{\begin{cases}x+4=2x-5\\x+4=-2x+5\end{cases}\Leftrightarrow\orbr{\begin{cases}x-2x=-5-4\\x+2x=5-4\end{cases}\Leftrightarrow}\orbr{\begin{cases}-x=-9\\3x=1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=9\\x=\frac{1}{3}\end{cases}}}\)
Vậy x=9; x=\(\frac{1}{3}\)
giải
\(\Rightarrow\orbr{\begin{cases}x+4=2x-5\\x+4=-2x+5\end{cases}\Rightarrow\orbr{\begin{cases}x-2x=-5-4\\x+2x=5-4\end{cases}\Rightarrow}\orbr{\begin{cases}-x=-9\\3x=1\end{cases}\Rightarrow}\orbr{\begin{cases}x=9\\x=\frac{1}{3}\end{cases}}}\)
vậy pt có 2 nghiệm là \(9;\frac{1}{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(9-\left(x-y\right)^2\)
\(=3^2-\left(x-y\right)^2\)
\(=\left(3-x+y\right)\left(3+x-y\right)\)
____
\(\left(x-y\right)^2-4\)
\(=\left(x-y\right)^2-2^2\)
\(=\left(x-y-2\right)\left(x-y+2\right)\)
____
\(\left(x+2\right)^2-y^2\)
\(=\left[\left(x+2\right)-y\right]\left[\left(x+2\right)+y\right]\)
\(=\left(x-y+2\right)\left(x+y+2\right)\)
____
\(\left(3x+1\right)^2-\left(x+1\right)^2\)
\(=\left(3x+1+x+1\right)\left(3x+1-x-1\right)\)
\(=2x\left(4x+2\right)\)
\(=4x\left(2x+1\right)\)
____
\(\left(x+y\right)^2-\left(x-y\right)^2\)
\(=\left(x+y+x-y\right)\left(x+y-x+y\right)\)
\(=2x\cdot2y\)
\(=4xy\)
____
\(\left(2xy+1\right)^2-\left(2x+y\right)^2\)
\(=\left(2xy+1-2x-y\right)\left(2xy+1+2x+y\right)\)
\(=\left[2x\left(y-1\right)-\left(y-1\right)\right]\left[2x\left(y+1\right)+\left(y+1\right)\right]\)
\(=\left(y-1\right)\left(2x-1\right)\left(2x+1\right)\left(y+1\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xét ΔABM và ΔADM có
AB=AD
\(\widehat{BAM}=\widehat{DAM}\)
AM chung
Do đó: ΔABM=ΔADM
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a,PT\left(1\right)=\dfrac{75y^4}{42x^2y^5};PT\left(2\right)=\dfrac{28x}{42x^2y^5}\\ b,PT\left(1\right)=\dfrac{11y^2}{102x^4y^3};PT\left(2\right)=\dfrac{9x^3}{10x^4y^3}\\ c,PT\left(1\right)=\dfrac{3x\left(3x+1\right)}{36x^2y^4};PT\left(2\right)=\dfrac{4y\left(y-2\right)}{36x^2y^4}\\ d,PT\left(1\right)=\dfrac{6y^2}{36x^3y^4};PT\left(2\right)=\dfrac{4x\left(x+1\right)}{36x^3y^4};PT\left(3\right)=\dfrac{9x^2y\left(x-1\right)}{36x^3y^4}\)
\(e,PT\left(1\right)=\dfrac{12y^4\left(3+2x\right)}{120x^4y^5};PT\left(2\right)=\dfrac{75x^2y^3}{120x^4y^5};PT\left(3\right)=\dfrac{8x^3}{120x^4y^5}\\ f,PT\left(1\right)=\dfrac{3\left(x+1\right)\left(4x-4\right)}{6x\left(x+3\right)\left(x+1\right)};PT\left(2\right)=\dfrac{2\left(x+3\right)\left(x-3\right)}{6x\left(x+1\right)\left(x+3\right)}\)
\(g,PT\left(1\right)=\dfrac{4x^2}{2x\left(x+2\right)^3};PT\left(2\right)=\dfrac{\left(x-2\right)\left(x+2\right)}{2x\left(x+2\right)^3}\\ h,PT\left(1\right)=\dfrac{5}{3x\left(x-2\right)\left(x+2\right)}=\dfrac{10\left(x+3\right)}{6x\left(x-2\right)\left(x+2\right)\left(x+3\right)}\\ PT\left(2\right)=\dfrac{3}{2\left(x+2\right)\left(x+3\right)}=\dfrac{9x\left(x-2\right)}{6x\left(x+2\right)\left(x+3\right)\left(x-2\right)}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(=\dfrac{2x^2y^2}{3xy^2}-\dfrac{2ax+3x}{3a}=\dfrac{2x}{3}-\dfrac{2ax+3x}{3a}\)
\(=\dfrac{2xa-2xa-3x}{3a}=\dfrac{-3x}{3a}=-\dfrac{x}{a}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(=\dfrac{5}{3}-\dfrac{5a-6}{3a}=\dfrac{5a-5a+6}{3a}=\dfrac{6}{3a}=\dfrac{2}{a}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(=\dfrac{2x-3a}{2a}+\dfrac{3}{2}=\dfrac{2x-3a+3a}{2a}=\dfrac{2x}{2a}=\dfrac{x}{a}\)