giúp m...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2021

Ta có: \(\widehat{BCD}=\widehat{BCE}+\widehat{ECD}=20^0+40^0=60^0\)

\(\Rightarrow\widehat{BCD}=\widehat{ABC}=60^0\)

Mà 2 góc này so le trong

=> AB//CD(1)

Ta có: \(\widehat{CEF}+\widehat{ECD}=140^0+40^0=180^0\)

Mà 2 góc này trong cùng phía

=> EF//CD(2)

Từ (1),(2)

=> AB//EF

7 tháng 10 2021

cảm ơn nhiều

28 tháng 7 2017

Bài 1:

x y m B A C 1 1 2 1

Qua B, vẽ tia Bm sao cho Bm // Ax

Bm // Ax ( cách vẽ ) => góc A1 + góc B1 = 180o ( trong cùng phía )

Mà góc A1 = 140o ( giả thiết ) => góc B1 = 40o

Ta có: góc B1 + góc B2 = góc ABC

Mà góc ABC = 70o ( giả thiết ); góc B1 = 40o ( chứng minh trên )

=> góc B2 = 30o

Ta có: góc B2 + góc C1 = 30o + 150o = 180o

Mà hai góc này ở vị trí trong cùng phía

=> Bm // Cy ( dấu hiệu nhận biết 2 đường thẳng song song )

Ta lại có:

Ax // Bm ( cách vẽ ); Cy // Bm ( chứng minh trên )

=> Ax // Cy ( tính chất 3 quan hệ từ vuông góc đến song song ) ( đpcm )

Bài 3:

A B C F E G N M H 1 2

a) Chứng minh AH < \(\dfrac{1}{2}\) ( AB + AC )

+) Vì AH vuông góc với BC ( giả thiết )

=> AH < AB ( quan hệ giữa đường vuông góc và đường xiên ) ( 1 )

+) Vì AH vuông góc với BC ( giả thiết )

=> AH < AC ( quan hệ giữa đường vuông góc và đường xiên ) ( 2 )

+) Từ ( 1 ) và ( 2 ) => AH + AH < AB + AC

=> 2 . AH < AB + AC

=> AH < \(\dfrac{1}{2}\) ( AB + AC ) ( đpcm )

b) Chứng minh EF = BC

+) Vì BM là đường trung tuyến của tam giác ABC ( giả thiết )

=> \(\dfrac{BG}{BM}=\dfrac{2}{3}\)

=> \(\dfrac{MG}{BG}=\dfrac{1}{2}\)

=> 2 . MG = BG

Mà EM = MG ( do BM là đường trung tuyến của tam giác ABC )

=> EM + MG = BG => EG = BG

+) Vì CN là đường trung tuyến của tam giác ABC ( giả thiết )

=> \(\dfrac{CG}{CN}=\dfrac{2}{3}\)

=> \(\dfrac{GN}{CG}=\dfrac{1}{2}\)

=> 2 . GN = CG

Mà FN = GN ( do CN là đường trung tuyến của tam giác ABC )

=> FN + GN = CG => FG = CG

Góc G1 = góc G2 ( đối đỉnh )

Xét tam giác FEG và tam giác CBG có:

FG = CG ( chứng minh trên )

EG = BG ( chứng minh trên )

Góc G1 = góc G2 ( chứng minh trên )

=> tam giác FEG = tam giác CBG ( c.g.c )

=> EF = BC ( 2 cạnh tương ứng ) ( đpcm )

15 tháng 2 2017

\(\frac{47}{32}\)

15 tháng 2 2017

bạn làm như thế nào?

19 tháng 10 2017

chẳng nhìn thấy j cả!oho Thông cảm mk bị cận!gianroi

26 tháng 10 2021

Mình không biết nha

26 tháng 10 2021

Bài 3 :

A B S M C P N x y 1 2 z 1 2

a) Kéo dài tia NM và NM cắt BC tại S

Khi đó ta có :

\(\hept{\begin{cases}\widehat{ABC}=\widehat{BSM}\left(\text{ 2 góc so le trong }\right)\\\widehat{MNP}=\widehat{BSM}\left(\text{ 2 góc so le trong }\right)\end{cases}}\Rightarrow\widehat{ABC}=\widehat{MNP}\Rightarrow\widehat{MNP}=40^o\)

b) Vẽ \(\hept{\begin{cases}\text{Bx là tia phân giác của }\widehat{ABC}\\\text{Ny là tia phân giác của }\widehat{MNP}\end{cases}}\)

\(\Rightarrow\widehat{B_1}=B_2=\widehat{N_1}=\widehat{N_2}=\frac{\widehat{ABC}}{2}=\frac{\widehat{MNP}}{2}=\frac{40^o}{2}=20^o\left(\text{do }\widehat{ABC}=\widehat{MNP}\right)\)

Vẽ Sz // Bx => \(\widehat{B_2}=\widehat{S_1}\)

Lại có \(\widehat{BSN}=\widehat{MSP}\Rightarrow\frac{\widehat{BSN}}{2}=\frac{\widehat{MSP}}{2}\Rightarrow\widehat{S_2}=\widehat{N_1}\)mà \(\widehat{S_2}\text{ và }\widehat{N_1}\)là 2 góc so le trong 

=> Sz // Ny mà Sz // Bx => Bx // Ny hay tia phân giác của 2 góc \(\widehat{ABC}\text{ và }\widehat{MNP}\)song song nhau

15 tháng 3 2017

2.

a) +) ta co: tam giác GLO

GL = 6, LO = 8, OG = 10

=> GL < LO < GO ( 6<8<10)

=> góc O < góc G < góc L ( quan hệ giữa góc và cạnh đối diện trong tam giác LOG )

+) ta co: tam giac UVW

góc V = 40, góc U = 50

=> góc W = 180 - ( góc V + goc Ư )

= 180 - ( 50 + 40)

= 90

=> góc V < góc U < góc W

=> UW < VW < VU ( quan hệ giữa cạnh và góc trong tam giác ACB )

15 tháng 3 2017

Bài 1 de rồi bạn tự làm nhé!!

7 tháng 8 2021
Rất tiếc mình hông biết lm
7 tháng 8 2021
Ko bn nào giúp mk hở . Bùn qué 😞
15 tháng 2 2017

\(a+b=4\)

17 tháng 2 2017

cách tính ?