![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Trả lời:
\(\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{\left(5x+1\right)\left(5x+6\right)}=\frac{2005}{2006}\)
\(\Rightarrow1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{5x+1}-\frac{1}{5x+6}=\frac{2005}{2006}\)
\(\Rightarrow1-\frac{1}{5x+6}=\frac{2005}{2006}\)
\(\Rightarrow\frac{1}{5x+6}=1-\frac{2005}{2006}\)
\(\Rightarrow\frac{1}{5x+6}=\frac{1}{2006}\)
\(\Rightarrow5x+6=2006\)
\(\Rightarrow5x=2000\)
\(\Rightarrow x=400\)
Vậy x = 400
Trả lời:
\(\frac{x}{2008}-\frac{1}{10}-\frac{1}{15}-\frac{1}{21}-...-\frac{1}{120}=\frac{5}{8}\)
\(\Rightarrow\frac{x}{2008}-\left(\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{120}\right)=\frac{5}{8}\)\(\frac{5}{8}\)
Đặt \(A=\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{120}\), ta được : \(\frac{x}{2008}-A=\frac{5}{8}\) (*)
\(\Rightarrow A=\frac{2}{20}+\frac{2}{30}+\frac{2}{42}+...+\frac{2}{240}\)
\(\Rightarrow A=2\left(\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{240}\right)\)
\(\Rightarrow A=2\left(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{15.16}\right)\)
\(\Rightarrow A=2\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{15}-\frac{1}{16}\right)\)
\(\Rightarrow A=2\left(\frac{1}{4}-\frac{1}{16}\right)=2.\frac{3}{16}=\frac{3}{8}\)
Thay A vào (*) , ta có:
\(\frac{x}{2008}-\frac{3}{8}=\frac{5}{8}\)
\(\Rightarrow\frac{x}{2008}=1\)
\(\Rightarrow x=2008\)
Vậy x = 2008
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(P=2^{100}-2^{99}-2^{98}-...-2^3-2^2-2\)
\(=2^{100}-\left(2+2^2+2^3+...+2^{99}\right)\)
\(A=2+2^2+2^3+...+2^{99}\)
\(2A=2^2+2^3+...+2^{100}\)
\(2A-A=\left(2^2+2^3+...+2^{100}\right)-\left(2+2^2+2^3+...+2^{99}\right)\)
\(A=2^{100}-2\)
\(P=2^{100}-\left(2^{100}-2\right)=2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(139,\)
a)Ta có
\(56=2^3.7\)
\(140=2^2.5.7\)
\(\Rightarrow UCLN\left(56,140\right)=2^2.7=28\)
b) Ta có :
\(24=2^3.3\)
\(84=2^2.3.7\)
\(180=2^2.5.3^2\)
\(\Rightarrow UCLN\left(24,84,180\right)=2^2.3=12\)
c)Ta có
\(60=2^2.3.5\)
\(180=2^2.5.3^2\)
\(\Rightarrow UCLN\left(60,180\right)=2^2.3.5=60\)
d) Ta có :
\(15=3.5\)
\(19=19\)
\(\Rightarrow UCLN\left(15,19\right)=1\)
#Rảnh
\(140,\)
a) Ta có :
\(16=2^4\)
\(80=2^4.5\)
\(176=2^4.11\)
\(\Rightarrow UCLN\left(16,80,176\right)=2^4=16\)
b) Ta có:
\(18=2.3^2\)
\(30=2.3.5\)
\(77=7.11\)
\(\Rightarrow UCLN\left(18,30,77\right)=2.3=6\)
#Rảnh
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a,\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}=1-\dfrac{1}{100}=\dfrac{99}{100}\\ b,\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{9.11}=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{9}-\dfrac{1}{11}=1-\dfrac{1}{11}=\dfrac{10}{11}\)
\(c,\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{99.101}=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}=1-\dfrac{1}{101}=\dfrac{100}{101}\)
\(d,\dfrac{1}{1.4}+\dfrac{1}{4.7}+...+\dfrac{1}{100.103}=\dfrac{1}{3}\left(\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{100.103}\right)=\dfrac{1}{3}\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{100}-\dfrac{1}{103}\right)=\dfrac{1}{3}\left(1-\dfrac{1}{103}\right)=\dfrac{1}{3}.\dfrac{102}{103}=\dfrac{34}{103}\)