K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2017

1)

a) Gọi 2 số tự nhiên liên tiếp là a ; a+1

Ta chứng minh : a . (a+1) chia hết cho

=> a.a + a.1

=> 2a + a

Vì 2a chia hết cho 2

=> a chia hết cho 2

=> a . (a+1) chia hết cho 2 đpcm

5 tháng 8 2017

vì sao 2a\(⋮\)2 thì a\(⋮\)2 hở bn? vd: 2a=6 thì sao

5 tháng 8 2017

Ta có : 4n+1 +2.4n = 384
<=> 4n.4 + 2.4n = 384
<=> 4n.(4 + 2) = 384
<=> 4n.6 = 384
<=> 4n = 64
<=> 4n = 43
<=> n = 3
@Thảo Nguyên

5 tháng 8 2017

b, A = {0; 1; 3; 7; 15}
@Thảo Nguyên

12 tháng 7 2017

Bài 1:

\(A=\dfrac{2}{1.5}+\dfrac{1}{5.9}+\dfrac{1}{9.13}+...+\dfrac{1}{89.93}\)

\(A=\dfrac{2}{1.5}+\dfrac{1}{4}.\left(\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{89}-\dfrac{1}{93}\right)\)

\(A=\dfrac{2}{5}+\dfrac{1}{4}.\left(\dfrac{1}{5}-\dfrac{1}{93}\right)\)

\(A=\dfrac{2}{5}+\dfrac{1}{4}.\dfrac{88}{465}\)

\(A=\dfrac{2}{5}+\dfrac{22}{465}=\dfrac{208}{465}\)

12 tháng 7 2017

1. Mk sửa lại đề bài như sau:

\(A=\dfrac{1}{1.5}+\dfrac{1}{5.9}+\dfrac{1}{9.13}+...+\dfrac{1}{89.93}\)

\(\Rightarrow4A=\dfrac{4}{1.5}+\dfrac{4}{5.9}+\dfrac{4}{9.13}+...+\dfrac{4}{89.93}\)

\(4A=1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{89}-\dfrac{1}{93}\)

\(4A=1-\dfrac{1}{93}\)

\(4A=\dfrac{92}{93}\)

\(A=\dfrac{92}{93}:4\)

\(A=\dfrac{23}{93}\)

2. Mk cux sửa lại đề bài:

\(A=3+3^2+3^3+3^4+3^5+...+3^{100}\)

\(=\left(3+3^2+3^3+3^4\right)+...+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)\)

\(=3\left(1+3+9+27\right)+...+3^{97}\left(1+3+9+27\right)\)

\(=3.40+...+3^{97}.40\)

\(=\left(3+3^{97}\right)⋮4.10\)

\(\Rightarrow A⋮4;10\)

Đề sai rồi bạn

9 tháng 7 2017

b)\(2+2^2+2^3+...+2^{100}\)

\(=\left(2+2^2+2^3+2^4+2^5\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)

\(=2\left(1+2+2^2+2^3+2^4\right)+...+2^{96}\left(1+2+2^2+2^3+2^4\right)\)

\(=2.31+....+2^{96}.31\)

\(=31.\left(2+....+2^{96}\right)⋮31\)

Vậy...

9 tháng 7 2017

a) \(5+5^2+5^3+...+5^{2004}\)

\(=\left(5+5^2\right)+\left(5^3+5^4\right)+...\left(5^{2003}+5^{2004}\right)\)

\(=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{2003}\left(1+5\right)\)

\(=5.6+5^3.6+...+5^{2003}.6\)

\(=6.\left(5+5^3+...+5^{2003}\right)⋮6\)

Vậy....

\(5+5^2+5^3+...+5^{2004}\)

\(=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6+\right)+...+\left(5^{2002}+5^{2003}+5^{2004}\right)\)

\(=5\left(1+5+5^2\right)+5^4\left(1+5+5^2\right)+...+5^{2002}\left(1+5+5^2\right)\)

\(=5.31+5^4.31+...+5^{2002}.31\)

\(=31.\left(5+5^4+...+5^{2002}\right)⋮31\)

Vậy...

Trường hợp 3 làm tương tự để chứng minh

10 tháng 7 2017

a)

\(123⋮3\\ 7\cdot3\cdot11119⋮3\\ \Rightarrow123+7\cdot3\cdot11119⋮3\)

Vậy \(123+7\cdot3\cdot11119⋮3\)

c)

\(8^8+2^{20}=\left(2^3\right)^8+2^{20}=2^{24}+2^{20}=2^{20}\cdot\left(2^4+1\right)=2^{20}\cdot\left(16+1\right)=2^{20}\cdot17⋮17\)

Vậy \(8^8+2^{20}⋮17\)

d)

Ta thấy:

\(...2^4=...6,...2^8=...6\Rightarrow...2^{4n}=...6\left(n\in N^{\circledast}\right)\)

\(...1^n=...1\left(n\in N^{\circledast}\right)\)

\(\left(...2\text{ là số có chữ số tận cùng là }2,\text{ tương tự với }...1,...6,...5\: \right)\)

\(\Rightarrow942^{60}-351^{37}=942^{4\cdot15}-351^{37}=...6-...1=...5⋮5\)

Vậy \(942^{60}-351^{37}⋮5\)

10 tháng 7 2017

b)

\(10^2+8=108⋮̸72\\ \Rightarrow\text{sai đề}\)