Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3=\frac{2006}{2007}+\frac{1}{2007}+\frac{2007}{2008}+\frac{1}{2008}+\frac{2008}{2009}+\frac{1}{2009}=B+\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}\)
=>.........................
\(A=\frac{2006}{2007}+\frac{2007}{2008}+\frac{2008}{2006}=1-\frac{1}{2007}+1-\frac{1}{2008}+1-\frac{2}{2006}=3+\left(\frac{1}{2006}-\frac{1}{2007}\right)+\left(\frac{1}{2006}-\frac{1}{2008}\right)\)\(>3+\left(\frac{1}{2007}-\frac{1}{2007}\right)+\left(\frac{1}{2008}-\frac{1}{2008}\right)=3=>A>3\)
\(A=\frac{2006}{2007}+\frac{2007}{2008}+\frac{2008}{2006}=1-\frac{1}{2007}+1-\frac{1}{2008}+1+\frac{2}{2006}\)
\(=3-\frac{1}{2007}-\frac{1}{2008}+\frac{2}{2006}=3+\left(\frac{1}{2006}-\frac{1}{2007}+\frac{1}{2006}-\frac{1}{2008}\right)\)
Vì \(\frac{1}{2006}>\frac{1}{2007};\frac{1}{2006}>\frac{1}{2008}\Rightarrow\frac{1}{2006}-\frac{1}{2007}>0;\frac{1}{2006}-\frac{1}{2008}>0\)
Do đó \(\frac{1}{2006}-\frac{1}{2007}+\frac{1}{2006}-\frac{1}{2008}>0\)
\(\Rightarrow3+\left(\frac{1}{2006}-\frac{1}{2007}+\frac{1}{2006}-\frac{1}{2008}\right)>3\)
Vậy \(A>3\)
\(A=\frac{2006+2007}{2006.2007}=\frac{2006}{2006.2007}+\frac{2007}{2006.2007}=\frac{1}{2007}+\frac{1}{2006}\)
\(B=\frac{2007+2008}{2007.2008}=\frac{2007}{2007.2008}+\frac{2008}{2007.2008}=\frac{1}{2008}+\frac{1}{2007}\)
Vì \(\frac{1}{2007}+\frac{1}{2006}>\frac{1}{2008}+\frac{1}{2007}\)
=> \(A>B\)
\(\frac{2006}{2007}< \frac{2007}{2007}=1\)
\(\frac{2007}{2008}< \frac{2008}{2008}=1\)
\(\frac{2008}{2009}< \frac{2009}{2009}=1\)
\(\Rightarrow a=\frac{2006}{2007}+\frac{2007}{2008}+\frac{2008}{2009}< 1+1+1=3\)
\(A=\frac{2006}{2007}+\frac{2007}{2008}+\frac{2008}{2009}\)
\(A=\left(1-\frac{1}{2007}\right)+\left(1-\frac{1}{2008}\right)+\left(1-\frac{1}{2009}\right)\)
\(A=\left(1+1+1\right)-\left(\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}\right)\)
\(A=3-\left(\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}\right)< 3\)
=13/12x14/13x15/14x16/15x...x2006/2005x2007/2006x2008/2007
=2008/12
=502/3
A = 1\(\dfrac{1}{12}\) \(\times\) 1\(\dfrac{1}{13}\) \(\times\) 1\(\dfrac{1}{14}\) \(\times\) 1\(\dfrac{1}{15}\) \(\times\) ... \(\times\) 1\(\dfrac{1}{2005}\) \(\times\) 1\(\dfrac{1}{2006}\) \(\times\) 1\(\dfrac{1}{2007}\)
A = ( 1 + \(\dfrac{1}{12}\)) \(\times\) ( 1 + \(\dfrac{1}{13}\)) \(\times\) ( 1 + \(\dfrac{1}{14}\)) \(\times\)...\(\times\) ( 1 + \(\dfrac{1}{2006}\))\(\times\)(1+\(\dfrac{1}{2007}\))
A = \(\dfrac{13}{12}\) \(\times\) \(\dfrac{14}{13}\) \(\times\) \(\dfrac{15}{14}\) \(\times\) ...\(\times\) \(\dfrac{2007}{2006}\) \(\times\) \(\dfrac{2008}{2007}\)
A = \(\dfrac{13\times14\times15\times...\times2007}{13\times14\times15\times...\times2007}\) \(\times\) \(\dfrac{2008}{12}\)
A = 1 \(\times\) \(\dfrac{502}{3}\)
A = \(\dfrac{502}{3}\)
A=20062007+20072008+20082009=1−12007+1−12008+1−12009�=20062007+20072008+20082009=1−12007+1−12008+1−12009
=3−12007−12008−12009
Lỗi rồi bạn oi, đừng chép nhé