K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2021

mình nghĩ phân thức A phải là : \(A=\frac{1}{\sqrt{x}-1}+\frac{\sqrt{x}}{x-1}\)chứ ? 

Với \(x\ge0;x\ne1;\frac{1}{4}\)

a, Thay x = 49 vào B ta được : \(B=\frac{49-7}{2.7-1}=\frac{42}{13}\)

b, Ta có : \(M=A.B=\left(\frac{1}{\sqrt{x}-1}+\frac{\sqrt{x}}{x-1}\right)\frac{x-\sqrt{x}}{2\sqrt{x}-1}\)

\(=\left(\frac{\sqrt{x}+1+\sqrt{x}}{x-1}\right).\frac{x-\sqrt{x}}{2\sqrt{x}-1}=\frac{\sqrt{x}\left(\sqrt{x}-1\right)\left(2\sqrt{x}+1\right)}{\left(x-1\right)\left(2\sqrt{x}-1\right)}=\frac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}\)

c, Ta có : \(M=\frac{1}{3}\Rightarrow\frac{2x+\sqrt{x}}{2x+\sqrt{x}-1}=\frac{1}{3}\Rightarrow6x+3\sqrt{x}=2x+\sqrt{x}-1\Leftrightarrow4x+2\sqrt{x}+1=0\)

Đặt \(\sqrt{x}=t\)( t > = 0 ) pt tương đương \(4t^2+2t+1=0\)

\(\Delta'=1-4=-3< 0\)

Vậy pt vô nghiệm hay ko có giá trị x khi M = 1/3 

19 tháng 3 2017

hình như là đề vio lớp 9 vòng 17 năm ngoái

22 tháng 11 2017

Đề 1: TỰ LUẬN

Câu 1: sin 60o31' = cos 29o29'

cos 75o12' = sin 14o48'

cot 80o = tan 10o

tan 57o30' = cot 32o30'

sin 69o21' = cos 20o39'

cot 72o25' = 17o35'

22 tháng 11 2017

- Chiều về mình làm cho nha nha vui Giờ mình đi học rồi thanghoa Bạn có gấp lắm hông leu

15 tháng 12 2016

ko đc đăng câu hỏi bằng hình ảnh

18 tháng 12 2016

Kệ Người ta nhiều chuyện

 

7 tháng 8 2017

\(\dfrac{\sqrt{12}-\sqrt{18}}{\sqrt{6}-3}-\dfrac{2\sqrt{6}-4}{\sqrt{3}-\sqrt{2}}=\dfrac{\sqrt{2.6}-\sqrt{2.9}}{\sqrt{6}-3}=\dfrac{\sqrt{2}\left(\sqrt{6}-3\right)}{\sqrt{6}-3}=\sqrt{2}\)

\(\dfrac{2\sqrt{6}-4}{\sqrt{3}-\sqrt{2}}=\dfrac{2\sqrt{2.3}-\sqrt{2.8}}{\sqrt{3}-\sqrt{2}}=\dfrac{2\sqrt{2}\left(\sqrt{3}-\sqrt{2}\right)}{\sqrt{3}-\sqrt{2}}=2\sqrt{2}\)

Vậy \(\dfrac{\sqrt{12}-\sqrt{18}}{\sqrt{6}-2}-\dfrac{2\sqrt{6}-4}{\sqrt{3}-\sqrt{2}}=\sqrt{2}-2\sqrt{2}=-\sqrt{2}\)

7 tháng 8 2017

\(\sqrt{11+4\sqrt{7}}+\dfrac{2+\sqrt{2}}{\sqrt{2}+1}=\sqrt{\left(2+\sqrt{7}\right)^2}+\dfrac{\sqrt{2}\left(\sqrt{2}+1\right)}{\sqrt{2}+1}=2+\sqrt{7}+\sqrt{2}\)

Vậy \(\sqrt{11+4\sqrt{7}}+\dfrac{2+\sqrt{2}}{\sqrt{2}+1}-\dfrac{3}{\sqrt{7}-2}=2+\sqrt{7}+\sqrt{2}-\dfrac{3}{\sqrt{7}-2}=\dfrac{\sqrt{2}\left(\sqrt{7}-2\right)}{\sqrt{7}-2}=\sqrt{2}\)

22 tháng 7 2017

Bài 3:

\(A=\sqrt{1-6x+9x^2}+\sqrt{9x^2-12x+4}\)

\(A=\sqrt{9x^2-3x-3x+1}+\sqrt{9x^2-6x-6x+4}\)

\(A=\sqrt{\left(3x-1\right)^2}+\sqrt{\left(3x-2\right)^2}\)

\(A=\left|3x-1\right|+\left|3x-2\right|\)

\(A=\left|3x-1\right|+\left|2-3x\right|\)

Áp dụng bất đẳng thức \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\) ta có:

\(\left|3x-1\right|+\left|2-3x\right|\ge\left|3x-1+2-3x\right|\)

\(\Rightarrow\left|3x-1\right|+\left|2-3x\right|\ge\left|1\right|=1\)

Dấu "=" sảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}3x-1\ge0\\2-3x\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3x\ge1\\3x\le2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ge\dfrac{1}{3}\\x\le\dfrac{2}{3}\end{matrix}\right.\)

\(\Rightarrow\dfrac{1}{3}\le x\le\dfrac{2}{3}\)

Vậy............

Chúc bạn học tốt!!!

22 tháng 7 2017

1 A\(=\sqrt{4\cdot5}-\sqrt{9\cdot5}+3\sqrt{9\cdot2}+\sqrt{36\cdot2}\)

\(=2\sqrt{5}-3\sqrt{5}+9\sqrt{2}+6\sqrt{2}\)

\(=\left(2\sqrt{5}-3\sqrt{5}\right)+\left(9\sqrt{2}+6\sqrt{2}\right)\)

\(=-\sqrt{5}+15\sqrt{2}\)

2 tháng 9 2016

Áp dụng hệ thức liên quan tới đường cao ta có:

 +)  \(2^2=x\cdot x\)

=>\(x=2\)

 +) \(\frac{1}{y^2}+\frac{1}{y^2}=\frac{1}{2^2}\)

=> \(\frac{2}{y^2}=\frac{1}{4}\)

=> \(y^2=8\)

=>\(y=\sqrt{8}\)

 

2 tháng 9 2016

Mình đặt tên cho dễ nha. \(\Delta\)ABC vuông tại A có AH là đường cao 

Áp dụng hệ thức lượng, ta có: AH2=HB.HC

                                              22 =x.x=x2

                                         => x=2

\(\Delta\)AHB vuông tại H, áp dụng định lý Py-ta-go, ta có:

                       AH2+HB2=AB2

                        22+22=AB2

=>                  y=       AB=2\(\sqrt{ }\)2

26 tháng 3 2017

ai gõ đề v, ẩu quá xá ngoặc của VP ở mẫu bài 15 quên đóng kìa :)

AH
Akai Haruma
Giáo viên
28 tháng 3 2017

Ai cho đề bài ngộ ghê =))) BĐT không đồng bậc cũng không thêm thắt điều kiện gì cũng chứng minh được à? Thử ngay 1,1,1 sai luôn rồi.

6 tháng 8 2017

Bài 1 :

\(a,2\sqrt{50}-3\sqrt{72}+\sqrt{98}=2\sqrt{2.25}-3\sqrt{2.36}+\sqrt{2.49}=10\sqrt{2}-18\sqrt{2}+7\sqrt{2}\) = \(-\sqrt{2}\)

\(b,\sqrt{\left(3-\sqrt{5}\right)^2}-\sqrt{\left(\sqrt{5}-\sqrt{7}\right)^2}+\sqrt{28}\) = \(\left|3-\sqrt{5}\right|-\left|\sqrt{5}-\sqrt{7}\right|+\sqrt{7.4}=3-\sqrt{5}-\sqrt{5}+\sqrt{7}+2\sqrt{7}=3-2\sqrt{5}+3\sqrt{7}\)

\(c,\sqrt{7-4\sqrt{3}}+\sqrt{7+4\sqrt{3}}=\sqrt{3-2.2\sqrt{3}+4}+\sqrt{3+2.2\sqrt{3}+4}=\)\(\sqrt{\left(\sqrt{3}-2\right)^2}+\sqrt{\left(\sqrt{3}+2\right)^2}=\left|-\left(2-\sqrt{3}\right)\right|+\left|\sqrt{3}+2\right|=2-\sqrt{3}+\sqrt{3}+2=4\)

6 tháng 8 2017

Siêu quá, toán lớp 9 mà làm được rùi!

5 tháng 2 2017

Bài 6: Gọi đồ thị hàm số y=ax+b là (d)

a)

Vì (d) đi qua A(0;2) nên 2=0x+b hay b=2 (1)

Vì (d) đi qua B(1;-3) nên -3=a+b (2)

Từ (1) và (2) ta có hệ phương trình:

\(\left\{\begin{matrix}b=2\\a+b=-3\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}a=-5\\b=2\end{matrix}\right.\)

Vậy: đồ thị hàm số cần tìm là y=-5x+2

b)

Vì (d) đi qua C(-5;3) nên 3=-5a+b (1)

Vì (d) đi qua D(\(\frac{3}{2}\);-1) nên -1=\(\frac{3}{2}\)a+b (2)

Từ (1), (2) ta có hệ phương trình:

\(\left\{\begin{matrix}-5a+b=3\\\frac{3}{2}a+b=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{\begin{matrix}a=-\frac{8}{13}\\b=-\frac{1}{13}\end{matrix}\right.\)

Vậy đồ thị hàm số cần tìm là y=\(-\frac{8}{13}\)x\(-\frac{1}{3}\)