Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tách ra ta đc (x+y)^2 + y^2=7 =>y^2 < 7 => y^2= 1 hoặc 4 thay vào rồi tính x
(x + y)2 = 2(x2 + y2)
x2 + 2xy + y2 = 2x2 + 2y2
x2 + y2 = 2xy
<=> x2 + y2 - 2xy = 0
=> (x - y)2 = 0
<=> x - y = 0
=> x = y
Vậy ...............
a, 3x2 - 8x + 4
= 3x2 - 6x - 2x + 4
= 3x(x - 2) - 2(x - 2)
= (3x - 2)(x - 2)
b, x2 - 4xy + 3y2
= x2 - xy - 3xy + 3y2
= x(x - y) - 3y(x - y)
= (x - 3y)(x - y)
\(a)3x^2-8x+4=3x^2-6x-2x+4=3x\left(x-2\right)-2\left(x-2\right)=\left(3x-2\right)\left(x-2\right)\)
\(b)x^2-4xy+3y^2=x^2-xy-3xy+3y^2=x\left(x-y\right)-3y\left(x-y\right)=\left(x-3y\right)\left(x-y\right)\)
\(c)2x^2+3881x-17505=2x^2+3890x-9x-17505=2x\left(x+1945\right)-9\left(x+1945\right)\)
\(=\left(2x-9\right)\left(x+1945\right)\)
A= (x+y)2-2xy
B= (x+y)*(x+y-xy)
C= [ (x+y)2 -2xy]2 - 2(xy)2
Từ đây bạn tự thay số vào tự giải nhé!!!
a) \(A=x^2+y^2=x^2+2xy+y^2-2xy=\left(x+y\right)^2-2xy=\left(-1\right)^2-2.\left(-12\right)=25\)
b) \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=\left(-1\right).\left(25-\left(-12\right)\right)=-37\)
c) \(x^4+y^4=\left(x^2+y^2\right)^2-2x^2y^2=\left(x^2+y^2\right)^2-2.\left(xy\right)^2=25^2-2.\left(-12\right)^2=337\)
\(25-y^2=8\left(x-2013\right)^2\)
\(\Leftrightarrow\) \(8\left(x-2013\right)^2+y^2=25\) \(\left(\text{ *}\right)\)
Vì \(y^2\ge0\) nên \(\left(x-2013\right)^2\le\frac{25}{8}\)
Do đó: \(\left(x-2013\right)^2=0\) hoặc \(\left(x-2013\right)^2=1\)
+) Thay \(\left(x-2013\right)^2=1\) vào \(\left(\text{ *}\right)\) , ta có: \(y^2=17\) (loại)
+) Thay \(\left(x-2013\right)^2=0\) vào \(\left(\text{ *}\right)\), ta có: \(y^2=25\) \(\Leftrightarrow\) \(y=5\) hoặc \(y=-5\)
Vậy, \(x=2013\) ; \(y=5\) hoặc \(y=-5\)