Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
11)
\(\dfrac{2x}{x+2}\) \(\times\) \(\dfrac{x^{2^{ }}-4}{4}\) - \(\dfrac{x}{2}\)
= \(\dfrac{2x}{x+2}\) \(\times\) \(\dfrac{x^2-2^2}{4}\) - \(\dfrac{x}{2}\)
= \(\dfrac{2x}{x+2}\) \(\times\) \(\dfrac{\left(x-2\right)\left(x+2\right)}{4}\) - \(\dfrac{x}{2}\)
= \(\dfrac{x\left(x-3\right)}{2}\)
ĐKXĐ: \(x\ne\pm2\)
\(\dfrac{x+1}{x-2}=\dfrac{2}{x^2-4}\)
\(\Rightarrow\dfrac{\left(x+1\right)\left(x+2\right)}{x^2-4}=\dfrac{2}{x^2-4}\)
\(\Rightarrow\left(x+1\right)\left(x+2\right)=2\)
\(\Leftrightarrow x^2+3x+2=2\)
\(\Leftrightarrow x^2+3x=0\)
\(\Leftrightarrow x\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\end{matrix}\right.\) (thỏa mãn)
đkxđ: \(x ≠2; x ≠-2\)
\(\dfrac{x+1}{x-2}=\dfrac{2}{x^2-4}\)
\(⇔\dfrac{(x+1)(x+2)}{x^2-4}=\dfrac{2}{x^2-4}\)
\(⇔(x+1)(x+2)=2\)
\(⇔x^2+3x=0\)
\(⇔x(x+3)=0\)
\(⇔\left[\begin{array}{} x=0\\ x+3=0 \end{array} \right.\)
\(⇔\left[\begin{array}{} x=0\\ x=-3 \end{array} \right.\)
Bài 2:
a) ĐKXĐ: \(x\notin\left\{2;-2\right\}\)
b) Ta có: \(M=\left(\dfrac{a}{a^2-4}+\dfrac{1}{a+2}+\dfrac{2}{2-a}\right):\left(a-2+\dfrac{10-a^2}{a+2}\right)\)
\(=\left(\dfrac{a}{\left(a-2\right)\left(a+2\right)}+\dfrac{a-2}{\left(a+2\right)\left(a-2\right)}-\dfrac{2\left(a+2\right)}{\left(a-2\right)\left(a+2\right)}\right):\left(\dfrac{a^2-4+10-a^2}{\left(a+2\right)}\right)\)
\(=\dfrac{a+a-2-2a-4}{\left(a-2\right)\left(a+2\right)}:\dfrac{6}{a+2}\)
\(=\dfrac{-6}{\left(a-2\right)\left(a+2\right)}\cdot\dfrac{a+2}{6}\)
\(=\dfrac{-1}{a-2}\)
d) Để M<0 thì a-2>0
hay a>2
Ta có:
\(\left(2x-1\right)^2+\left(x-2\right)\left(x+2\right)=\left(5x+1\right)\left(x-4\right)-12\)
\(\left(4x^2-4x+1\right)+x^2-4=5x^2-19x-4-12\)
\(5x^2-4x-3=5x^2-19x-16\)
\(\left(5x^2-5x^2\right)+\left(19x-4x\right)+\left(16-3\right)=0\)\(15x+13=0\)\(x=-\frac{13}{15}\)