![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 3 :
A B S M C P N x y 1 2 z 1 2
a) Kéo dài tia NM và NM cắt BC tại S
Khi đó ta có :
\(\hept{\begin{cases}\widehat{ABC}=\widehat{BSM}\left(\text{ 2 góc so le trong }\right)\\\widehat{MNP}=\widehat{BSM}\left(\text{ 2 góc so le trong }\right)\end{cases}}\Rightarrow\widehat{ABC}=\widehat{MNP}\Rightarrow\widehat{MNP}=40^o\)
b) Vẽ \(\hept{\begin{cases}\text{Bx là tia phân giác của }\widehat{ABC}\\\text{Ny là tia phân giác của }\widehat{MNP}\end{cases}}\)
\(\Rightarrow\widehat{B_1}=B_2=\widehat{N_1}=\widehat{N_2}=\frac{\widehat{ABC}}{2}=\frac{\widehat{MNP}}{2}=\frac{40^o}{2}=20^o\left(\text{do }\widehat{ABC}=\widehat{MNP}\right)\)
Vẽ Sz // Bx => \(\widehat{B_2}=\widehat{S_1}\)
Lại có \(\widehat{BSN}=\widehat{MSP}\Rightarrow\frac{\widehat{BSN}}{2}=\frac{\widehat{MSP}}{2}\Rightarrow\widehat{S_2}=\widehat{N_1}\)mà \(\widehat{S_2}\text{ và }\widehat{N_1}\)là 2 góc so le trong
=> Sz // Ny mà Sz // Bx => Bx // Ny hay tia phân giác của 2 góc \(\widehat{ABC}\text{ và }\widehat{MNP}\)song song nhau
![](https://rs.olm.vn/images/avt/0.png?1311)
1.Điều kiện : \(x\ge0\)
\(\Rightarrow\hept{\begin{cases}x+3,4>0\\x+2,4>0\\x+7,2>0\end{cases}}\Rightarrow\hept{\begin{cases}\left|x+3,4\right|=x+3,4\\\left|x+2,4\right|=x+2,4\\\left|x+7,2\right|=x+7,2\end{cases}}\)
\(\Rightarrow\left|x+3,4\right|+\left|x+2,4\right|+\left|x+7,2\right|=x+3,4+x+2,4+x+7,2\)
\(=3x+13=4x\)
\(\Rightarrow4x-3x=13\)
\(\Rightarrow x=13\)
Vậy \(x=13\)
2.\(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}\)
\(=3^n\left(3^3+3\right)+2^n\left(2^3+2^2\right)\)
\(=3^n\left(27+3\right)+2^n\left(8+4\right)\)
\(=3^n.30+2^n.12\)
\(=6\left(3^n.5+2^n.2\right)⋮6\)
4.a)
- \(3^{34}=3^{30+4}=3^{30}.3^4=3^{3.10}.3^4=\left(3^3\right)^{10}.3^4=27^{10}.3^4\)
\(5^{20}=5^{2.10}=\left(5^2\right)^{10}=25^{10}\)
Vì \(27^{10}>25^{10}\Rightarrow27^{10}.3^4>25^{10}\)
hay \(3^{34}>5^{20}\)
- \(17^{20}=17^{4.5}=\left(17^4\right)^5=83521^5>71^5\)
b)\(2^{300}=2^{3.100}=\left(2^3\right)^{100}=8^{100}\)
\(3^{200}=3^{2.100}=\left(3^2\right)^{100}=9^{100}\)
Vì \(8^{100}< 9^{100}\Rightarrow2^{300}< 3^{200}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\)
\(=1-\frac{1}{101}=\frac{100}{101}\)
b) \(\frac{4}{3.5}+\frac{4}{5.7}+\frac{4}{7.9}+...+\frac{4}{97.99}\)
\(=2\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\right)\)
\(=2\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\right)\)
\(=2\left(\frac{1}{3}-\frac{1}{99}\right)\)
\(=2.\frac{32}{99}=\frac{64}{99}\)
Bài 1: Tính hợp lí:
\(a)\)\(\frac{14}{57}+\frac{29}{23}-\frac{71}{57}+\frac{-6}{23}\)
\(=\)\(\left(\frac{14}{57}-\frac{71}{57}\right)+\left(\frac{29}{23}+\frac{-6}{23}\right)\)
\(=\)\(\left(-\frac{57}{57}\right)+\left(\frac{23}{23}\right)\)
\(=\)\(\left(-1\right)+1\)
\(=\)\(0\)
\(b)\)\(\frac{5}{12}.\left(\frac{-3}{4}\right)+\frac{7}{12}.\left(\frac{-3}{4}\right)\)
\(=\)\(\left(\frac{-3}{4}\right).\left(\frac{5}{12}+\frac{7}{12}\right)\)
\(=\)\(\left(\frac{-3}{4}\right).1\)
\(=\)\(-\frac{3}{4}\)
\(c)\)\(\left(\frac{-3}{11}\div\frac{5}{22}\right).\left(\frac{-15}{3}\div\frac{26}{3}\right)\)
\(=\)\(\left(\frac{-3}{11}.\frac{22}{5}\right).\left(\frac{-15}{3}.\frac{3}{26}\right)\)
\(=\)\(\frac{-6}{5}.\frac{-15}{26}\)
\(=\)\(\frac{9}{13}\)
\(d)\)\(\left(0,25\right)^{100}.4^{103}\)
\(=\)\(\left(\frac{1}{4}\right)^{100}.4^{103}\)
\(=\)\(\left(\frac{1}{4}.4\right)^{100+103}\)
\(=\)\(1^{203}\)
\(=\)\(1\)
Bài 2: Tìm x, biết:
\(a)\)\(\left(\frac{3}{7}-2x\right)^2=\frac{4}{9}\)
\(\Leftrightarrow\)\(\left(\frac{3}{7}-2x\right)^2=\left(\frac{2}{3}\right)^2\)
\(\Leftrightarrow\)\(\frac{3}{7}-2x=\frac{2}{3}\)
\(\Leftrightarrow\)\(2x=\frac{3}{7}-\frac{2}{3}\)
\(\Leftrightarrow\)\(2x=\frac{-5}{21}\)
\(\Leftrightarrow\)\(x=\frac{-5}{21}\div2\)
\(\Leftrightarrow\)\(x=\frac{-5}{42}\)
\(b)\)\(x+5,5=7,5\)
\(\Leftrightarrow\)\(x=7,5-5,5\)
\(\Leftrightarrow\)\(x=2\)