K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
![](https://rs.olm.vn/images/avt/0.png?1311)
5 tháng 2 2020
Lời giải :
A B C B' C' a C''
Ta có : \(\frac{AB'}{AB}=\frac{AC'}{AC}\)( GT ) ( 1 )
+) Đường thẳng a đi qua B' song song với BC ( GT )
\(B'C''//BC\)( vì đường thẳng a cắt AC tại C'' )
\(\Rightarrow\frac{AB'}{AB}=\frac{AC''}{AC}\)( Định lí Ta lét ) ( 2 )
Từ ( 1 ) và ( 2 )
\(\Rightarrow AC'=AC''\)
A B C A' B' C' d d' a b c h h'
\(\Delta\)AB'B và \(\Delta\)BB'C có chung chiều cao hạ từ B' nên \(\frac{AB}{BC}=\frac{S_{AB'B}}{S_{BB'C}}\)
Ta có: \(S_{AB'B}=S_{A'BB'}\)(Cùng chiều cao h hạ từ A và A')
Tương tự: \(S_{BB'C}=S_{B'BC'}\)
Suy ra: \(\frac{AB}{BC}=\frac{S_{AB'B}}{S_{BB'C}}=\frac{S_{A'BB'}}{S_{B'BC'}}=\frac{A'B'}{B'C'}\)(Do \(\Delta\)A'BB' và \(\Delta\)B'BC' có chung chiều cao hạ từ B)
Vậy \(\frac{AB}{BC}=\frac{A'B'}{B'C'}\)(đpcm).
Mih vẫn thấy vô lý tại sao tg ABB' và tgBB'c lại có chung chiều cao