Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{46}-\frac{1}{56}\)
P=\(1-\frac{1}{56}\)
P=\(\frac{55}{56}\)
a, Đề có vẻ sai sai nhé :v
b, \(\left|\frac{1}{2}x-\frac{2}{3}\right|-1=\frac{1}{6}\)
\(\Leftrightarrow\left|\frac{1}{2}x-\frac{2}{3}\right|=\frac{7}{6}\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{1}{2}x-\frac{2}{3}=\frac{7}{6}\\\frac{1}{2}x-\frac{2}{3}=-\frac{7}{6}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{11}{3}\\x=-1\end{cases}}\)
Vậy : ....
c, \(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x(x+1)}=\frac{4}{5}\)
\(\Leftrightarrow\frac{2}{2\cdot3}+\frac{2}{3\cdot4}+\frac{2}{4\cdot5}+...+\frac{2}{x\cdot(x+1)}=\frac{4}{5}\)
\(\Leftrightarrow2\left[\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right]=\frac{4}{5}\)
\(\Leftrightarrow2\left[\frac{1}{2}-\frac{1}{x+1}\right]=\frac{4}{5}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2}{5}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{10}\)
\(\Leftrightarrow x+1=10\Leftrightarrow x=9\)
Vậy x = 9
Đặt \(A=\frac{7^2}{2.9}+\frac{7^2}{9.16}+\frac{7^2}{16.23}+\frac{7^2}{23.30}\)
\(\Rightarrow A=7.\left(\frac{1}{2}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+\frac{1}{16}-\frac{1}{23}+\frac{1}{23}-\frac{1}{30}\right)\)
\(\Rightarrow A=7.\left(\frac{1}{2}-\frac{1}{30}\right)\)
\(\Rightarrow A=\frac{49}{15}\)
đặt biểu thức là B
Ta có công thức :
\(\frac{a}{b.c}=\frac{a}{c-b}.\left(\frac{1}{b}-\frac{1}{c}\right)\)
Dựa vào công thức, ta có :
\(B=7.\left(\frac{1}{2}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+.....+\frac{1}{23}-\frac{1}{30}\right)\)
\(B=7.\left(\frac{1}{2}-\frac{1}{30}\right)=7.\frac{7}{15}=\frac{49}{15}\)
Ai thấy đúng thì ủng hộ nha !!!
b) Ta có : \(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
..................
\(\frac{1}{100^2}< \frac{1}{99.100}\)
Nên : \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{99.100}\)
<=> \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{100^2}< 1+\frac{1}{2}-\frac{1}{2}+.....+\frac{1}{99}-\frac{1}{100}\)
<=> \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{100^2}< 1-\frac{1}{100}< 1\left(\text{đpcm}\right)\)
\(b)\) Ta có :
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}< 1\)
Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\)
Chúc bạn học tốt ~
BÀi này dễ thôi bạn ạ
N=3(1/5.7+1/7.9+.........+1/197.199)
N=3/2( 1/5-1/7+1/7-1/9+1/9-..........+1/197-1/199)
N=3/2(1/5-1/199)
N=3/2.194/995
N=291/995
k đúng cho mình nhé
N=3.1/2.(1/5-1/7+1/7-1/9+1/9-1/11+...+1/197-1/199)
N=3.1/2.(1/5-1/99)
N=3.1/2.94/495
N=3.47/495
N=47/165
\(Y=\frac{2^2.9}{27.2}=\frac{2.2.9}{3.9.2}=\frac{2}{3}\)
\(y=\frac{2^2.9}{27.2}=\frac{2.2.9}{3.9.2}=\frac{2}{3}\)