Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2 -32 = 6x -x2 -18 +3x
(x -3 )(x+3 ) =9x -x2 - 9
x2 +3x-3x- 9 =9x - x2 -9
x2 - x 2 -9x = -9 +9
-9 x = 0
=> x = 0
a: \(\Leftrightarrow\left(2-x\right)\left(x-3\right)+\left(x-1\right)\left(x+3\right)=-4x\)
\(\Leftrightarrow2x-6-x^2+3x+x^2+3x-x-3=-4x\)
=>7x-9=-4x
=>11x=9
hay x=9/11
b: \(\Leftrightarrow\left(5-x\right)\left(x-4\right)+\left(x+2\right)\left(x+4\right)=-3x\)
\(\Leftrightarrow5x-20-x^2+4x+x^2+6x+8=-3x\)
=>15x-12=-3x
=>18x=12
hay x=2/3
\(A=x\left(x+2\right)\left(x+4\right)\left(x+6\right)-9 \)
\(A=x\left(x+6\right)\left(x+2\right)\left(x+4\right)-9\)
\(A=\left(x^2+6x\right)\left(x^2+6x+8\right)-9\)
Đặt \(x^2+6x+4=t\)
Ta được: \(A=\left(t-4\right)\left(t+4\right)-9\)
\(A=t^2-25\)
\(A=\left(t+5\right)\left(t-5\right)\)
\(A=\left(x^2+6x+9\right)\left(x^2+6x-1\right)\)
\(A=\left(x+3\right)^2\left(x^2+6x-1\right)\)
\(B=\left(x^2-3x\right)^2+5x^2-15x+6\)
\(B=\left(x^2-3x\right)^2+5\left(x^2-3x\right)+6\)
\(B=\left(x^2-3x\right)\left(x^2-3x+5\right)+6\)
Đặt \(x^2-3x=a\)
Ta được: \(B=a\left(a+5\right)+6\)
\(B=a^2+5a+6\)
\(B=a^2+2a+3a+6\)
\(B=a\left(a+2\right)+3\left(a+2\right)\)
\(B=\left(a+2\right)\left(a+3\right)\)
\(B=\left(x^2-3x+2\right)\left(x^2-3x+3\right)\)
\(B=\left(x^2-x-2x+2\right)\left(x^2+3x+3\right)\)
\(B=\left[x\left(x-1\right)-2\left(x-1\right)\right]\left(x^2+3x+3\right)\)
\(B=\left(x-1\right)\left(x-2\right)\left(x^2+3x+3\right)\)
a. \(\left(x^2-2x+1\right)-3x\left(x-1\right)=0\)
\(\Leftrightarrow x^2-2x+1-3x^2+3x=0\)
\(\Leftrightarrow-2x^2+x+1=0\)
\(\Leftrightarrow-2x^2+2x-x+1=0\)
\(\Leftrightarrow-2x\left(x-1\right)-\left(x-1\right)=0\)
\(\Leftrightarrow-\left(2x+1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x+1=0\\x-1=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=1\end{cases}}\)
Vậy \(x\in\left\{-\frac{1}{2};1\right\}\)
b. \(4\left(7x-3\right)-\left(7x^2-3x\right)=0\)
\(\Leftrightarrow4\left(7x-3\right)-x\left(7x-3\right)=0\)
\(\Leftrightarrow\left(4-x\right)\left(7x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}4-x=0\\7x-3=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=4\\x=\frac{3}{7}\end{cases}}\)
Vậy \(x\in\left\{4;\frac{3}{7}\right\}\)
c.\(\left(5-x\right)\left(2+3x\right)=4-9x^2\)
\(\Leftrightarrow\left(5-x\right)\left(2+3x\right)=\left(2-3x\right)\left(2+3x\right)\)
\(\Leftrightarrow\left(2+3x\right)\left(5-x-2+3x\right)=0\)
\(\Leftrightarrow\left(2+3x\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2+3x=0\\2x+3=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{2}{3}\\x=-\frac{3}{2}\end{cases}}\)
Vậy \(x\in\left\{-\frac{2}{3};-\frac{3}{2}\right\}\)
d. \(7-\left(2x+4\right)=-\left(x+4\right)\)
\(\Leftrightarrow7-2x-4=-x-4\)
\(\Leftrightarrow7-4+4=-x+2x\)
\(\Leftrightarrow7=x\)
Vậy x = 7
e. \(\left(x-1\right)-\left(2x-1\right)=9\)
\(\Leftrightarrow x-1-2x+1=9\)
\(\Leftrightarrow-x=9\)
\(\Leftrightarrow x=-9\)
g. \(x^3+x^2+x+1=0\)
\(\Leftrightarrow x^2\left(x+1\right)+\left(x+1\right)=0\)
\(\Leftrightarrow\left(x^2+1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+1=0\\x+1=0\end{cases}}\)Mà : \(x^2+1\ge1>0\)
\(\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=-1\)
Vậy x = -1
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
\(\left(x-4\right)\left(x^2+4x+16\right)-x\left(x^2-6\right)=2\)
\(\Rightarrow x^3-64-x^3+6x=2\)
\(\Rightarrow-64+6x=2\)
\(\Rightarrow6x=66\Rightarrow x=11\)
a, (x-2)^2 - (x-3)(x+3)=6
x^2-4x+4-(x^2-9)=6
x^2-4x+4-x^2+9=6
(x^2-x^2)-4x+13=6
-4x=-7
x=1,75
b, 4(x-3)^2 - (2x-1)(2x+1)=10
4(x^2-6x+9)-(4x^2-1)=10
4x^2-24x+36-4x^2+1=10
-24x+37=10
x=9/8
c,(x-4)^2 - (x+2)(x-2)=6
x^2-8x+16-(x^2-4)=6
x^2-8x+16-x^2+4=6
-8x+20=6
x=7/4
d, 9(x+1)^2 - (3x-2)(3x+2)=10
9(x^2+2x+1)-(9x^2-4)=10
9x^2+18x+9-9x^2+4=10
18x+13=10
x=-1/6
\(a,\left(x-2\right)^2-\left(x-3\right)\left(x+3\right)=6\)
\(\left(x-2\right)^2-\left(x-3\right)\left(x+3\right)=6\)
\(-4x+13=6\)
\(-4x=6-13\)
\(-4x=-7\)
\(x=\frac{-7}{-4}\)
\(x=\frac{7}{4}\)
Vậy \(x=\frac{7}{4}\)
\(b,4\left(x-3\right)^2-\left(2x-1\right)\left(2x+1\right)=10\)
\(4\left(x^2-6x+9\right)-\left(4x^2-1\right)=10\)
\(4x^2-24x+36-4x^2+1=10\)
\(-24x+37=10\)
\(x=\frac{9}{8}\)
Vậy \(x=\frac{9}{8}\)
\(c,\left(x-4\right)^2-\left(x+2\right)\left(x-2\right)=6\)
\(x^2-8x+16-\left(x^2-4\right)=6\)
\(x^2-8x+16-x^2+4=6\)
\(-8x+20=6\)
\(x=\frac{7}{4}\)
Vậy \(x=\frac{7}{4}\)
\(d,9\left(x+1\right)^2-\left(3x-2\right)\left(3x+2\right)=10\)
\(9\left(x^2+2x+1\right)-\left(9x^2-4\right)=10\)
\(9x^2+18x+9-9x^2+4=10\)
\(18x+13=10\)
\(x=\frac{-1}{6}\)
Vậy \(x=\frac{-1}{6}\)
\(x\left(x+2\right)\left(x+4\right)\left(x+6\right)=9\)
\(\Leftrightarrow x\left(x+2\right)\left(x+4\right)\left(x+6\right)-9=0\)
Đặt \(A=x\left(x+2\right)\left(x+4\right)\left(x+6\right)-9\)
\(A=x\left(x+6\right)\left(x+2\right)\left(x+4\right)-9\)
\(=\left(x^2+6x\right)\left(x^2+6x+8\right)-9\)(1)
Đặt \(a=x^2+6x\)
\(\Rightarrow\left(1\right)=a\left(a+8\right)-9=a^2+8a-9\)
\(=\left(a+4\right)^2-25=\left(a+4-5\right)\left(a+4+5\right)\)
\(=\left(a-1\right)\left(a+9\right)=\left(x^2+6x-1\right)\left(x^2+6x+9\right)\)
\(=\left(x^2+6x-1\right)\left(x+3\right)^2\)
\(pt\Leftrightarrow\left(x^2+6x-1\right)\left(x+3\right)^2=0\)
\(TH1:x^2+6x-1=0\)
\(\Leftrightarrow\left(x+3\right)^2-10=0\)
\(\Leftrightarrow\left(x+3\right)^2=10\)
\(\Leftrightarrow\orbr{\begin{cases}x+3=\sqrt{10}\\x+3=-\sqrt{10}\end{cases}}\Leftrightarrow x=\pm\sqrt{10}+3\)
\(TH2:\left(x+3\right)^2=0\Leftrightarrow x+3=0\Leftrightarrow x=-3\)
Vậy \(x\in\left\{\pm\sqrt{10}+3;-3\right\}\)