K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 9 2019

\(x\left(x+2\right)\left(x+4\right)\left(x+6\right)=9\)

\(\Leftrightarrow x\left(x+2\right)\left(x+4\right)\left(x+6\right)-9=0\)

Đặt \(A=x\left(x+2\right)\left(x+4\right)\left(x+6\right)-9\)

\(A=x\left(x+6\right)\left(x+2\right)\left(x+4\right)-9\)

\(=\left(x^2+6x\right)\left(x^2+6x+8\right)-9\)(1)

Đặt \(a=x^2+6x\)

\(\Rightarrow\left(1\right)=a\left(a+8\right)-9=a^2+8a-9\)

\(=\left(a+4\right)^2-25=\left(a+4-5\right)\left(a+4+5\right)\)

\(=\left(a-1\right)\left(a+9\right)=\left(x^2+6x-1\right)\left(x^2+6x+9\right)\)

\(=\left(x^2+6x-1\right)\left(x+3\right)^2\)

\(pt\Leftrightarrow\left(x^2+6x-1\right)\left(x+3\right)^2=0\)

\(TH1:x^2+6x-1=0\)

\(\Leftrightarrow\left(x+3\right)^2-10=0\)

\(\Leftrightarrow\left(x+3\right)^2=10\)

\(\Leftrightarrow\orbr{\begin{cases}x+3=\sqrt{10}\\x+3=-\sqrt{10}\end{cases}}\Leftrightarrow x=\pm\sqrt{10}+3\)

\(TH2:\left(x+3\right)^2=0\Leftrightarrow x+3=0\Leftrightarrow x=-3\)

Vậy \(x\in\left\{\pm\sqrt{10}+3;-3\right\}\)

9 tháng 7 2018

x2 -32 = 6x -x2 -18 +3x 

(x -3 )(x+3 ) =9x -x2 - 9

 x2 +3x-3x- 9 =9x - x2 -9

x2 - x 2 -9x = -9 +9 

-9 x = 0

=> x = 0

a: \(\Leftrightarrow\left(2-x\right)\left(x-3\right)+\left(x-1\right)\left(x+3\right)=-4x\)

\(\Leftrightarrow2x-6-x^2+3x+x^2+3x-x-3=-4x\)

=>7x-9=-4x

=>11x=9

hay x=9/11

b: \(\Leftrightarrow\left(5-x\right)\left(x-4\right)+\left(x+2\right)\left(x+4\right)=-3x\)

\(\Leftrightarrow5x-20-x^2+4x+x^2+6x+8=-3x\)

=>15x-12=-3x

=>18x=12

hay x=2/3

23 tháng 7 2018

\(A=x\left(x+2\right)\left(x+4\right)\left(x+6\right)-9 \)

\(A=x\left(x+6\right)\left(x+2\right)\left(x+4\right)-9\)

\(A=\left(x^2+6x\right)\left(x^2+6x+8\right)-9\)

Đặt \(x^2+6x+4=t\)

Ta được: \(A=\left(t-4\right)\left(t+4\right)-9\)

               \(A=t^2-25\)

               \(A=\left(t+5\right)\left(t-5\right)\)

              \(A=\left(x^2+6x+9\right)\left(x^2+6x-1\right)\) 

             \(A=\left(x+3\right)^2\left(x^2+6x-1\right)\)

23 tháng 7 2018

\(B=\left(x^2-3x\right)^2+5x^2-15x+6\)

\(B=\left(x^2-3x\right)^2+5\left(x^2-3x\right)+6\)

\(B=\left(x^2-3x\right)\left(x^2-3x+5\right)+6\)

Đặt \(x^2-3x=a\)

Ta được: \(B=a\left(a+5\right)+6\)

               \(B=a^2+5a+6\)

               \(B=a^2+2a+3a+6\)

               \(B=a\left(a+2\right)+3\left(a+2\right)\)

               \(B=\left(a+2\right)\left(a+3\right)\)

               \(B=\left(x^2-3x+2\right)\left(x^2-3x+3\right)\)

               \(B=\left(x^2-x-2x+2\right)\left(x^2+3x+3\right)\)

               \(B=\left[x\left(x-1\right)-2\left(x-1\right)\right]\left(x^2+3x+3\right)\)

               \(B=\left(x-1\right)\left(x-2\right)\left(x^2+3x+3\right)\)

21 tháng 1 2020

phá ngoặc ra mà tính đi bn ơi

21 tháng 1 2020

a. \(\left(x^2-2x+1\right)-3x\left(x-1\right)=0\)

\(\Leftrightarrow x^2-2x+1-3x^2+3x=0\)

\(\Leftrightarrow-2x^2+x+1=0\)

\(\Leftrightarrow-2x^2+2x-x+1=0\)

\(\Leftrightarrow-2x\left(x-1\right)-\left(x-1\right)=0\)

\(\Leftrightarrow-\left(2x+1\right)\left(x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x+1=0\\x-1=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=1\end{cases}}\)

Vậy \(x\in\left\{-\frac{1}{2};1\right\}\)

b. \(4\left(7x-3\right)-\left(7x^2-3x\right)=0\)

\(\Leftrightarrow4\left(7x-3\right)-x\left(7x-3\right)=0\)

\(\Leftrightarrow\left(4-x\right)\left(7x-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}4-x=0\\7x-3=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=4\\x=\frac{3}{7}\end{cases}}\)

Vậy \(x\in\left\{4;\frac{3}{7}\right\}\)

c.\(\left(5-x\right)\left(2+3x\right)=4-9x^2\)

\(\Leftrightarrow\left(5-x\right)\left(2+3x\right)=\left(2-3x\right)\left(2+3x\right)\)

\(\Leftrightarrow\left(2+3x\right)\left(5-x-2+3x\right)=0\)

\(\Leftrightarrow\left(2+3x\right)\left(2x+3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2+3x=0\\2x+3=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{2}{3}\\x=-\frac{3}{2}\end{cases}}\)

Vậy \(x\in\left\{-\frac{2}{3};-\frac{3}{2}\right\}\)

d. \(7-\left(2x+4\right)=-\left(x+4\right)\)

\(\Leftrightarrow7-2x-4=-x-4\)

\(\Leftrightarrow7-4+4=-x+2x\)

\(\Leftrightarrow7=x\)

Vậy x = 7

e. \(\left(x-1\right)-\left(2x-1\right)=9\)

\(\Leftrightarrow x-1-2x+1=9\)

\(\Leftrightarrow-x=9\)

\(\Leftrightarrow x=-9\)

g. \(x^3+x^2+x+1=0\)

\(\Leftrightarrow x^2\left(x+1\right)+\left(x+1\right)=0\)

\(\Leftrightarrow\left(x^2+1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+1=0\\x+1=0\end{cases}}\)Mà : \(x^2+1\ge1>0\)

\(\Leftrightarrow x+1=0\)

\(\Leftrightarrow x=-1\)

Vậy x = -1

31 tháng 8 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

13 tháng 10 2018

    \(\left(x-4\right)\left(x^2+4x+16\right)-x\left(x^2-6\right)=2\)

\(\Rightarrow x^3-64-x^3+6x=2\)

\(\Rightarrow-64+6x=2\)

\(\Rightarrow6x=66\Rightarrow x=11\)

7 tháng 1 2017

<=>\(\frac{24-18-X}{6}\)=\(\frac{3X}{6}\)

<=>\(6-X=3X\)

<=>\(-4X=-6\)

<=>\(X=\frac{3}{2}\)

11 tháng 12 2017

a, (x-2)^2 - (x-3)(x+3)=6

x^2-4x+4-(x^2-9)=6

x^2-4x+4-x^2+9=6

(x^2-x^2)-4x+13=6

-4x=-7

x=1,75

b, 4(x-3)^2 - (2x-1)(2x+1)=10

4(x^2-6x+9)-(4x^2-1)=10

4x^2-24x+36-4x^2+1=10

-24x+37=10

x=9/8

c,(x-4)^2 - (x+2)(x-2)=6

x^2-8x+16-(x^2-4)=6

x^2-8x+16-x^2+4=6

-8x+20=6

x=7/4

d, 9(x+1)^2 - (3x-2)(3x+2)=10

9(x^2+2x+1)-(9x^2-4)=10

9x^2+18x+9-9x^2+4=10

18x+13=10

x=-1/6

1 tháng 7 2018

\(a,\left(x-2\right)^2-\left(x-3\right)\left(x+3\right)=6\)

\(\left(x-2\right)^2-\left(x-3\right)\left(x+3\right)=6\)

\(-4x+13=6\)

\(-4x=6-13\)

\(-4x=-7\)

\(x=\frac{-7}{-4}\)

\(x=\frac{7}{4}\)

Vậy \(x=\frac{7}{4}\)

\(b,4\left(x-3\right)^2-\left(2x-1\right)\left(2x+1\right)=10\)

\(4\left(x^2-6x+9\right)-\left(4x^2-1\right)=10\)

\(4x^2-24x+36-4x^2+1=10\)

\(-24x+37=10\)

\(x=\frac{9}{8}\)

Vậy \(x=\frac{9}{8}\)

\(c,\left(x-4\right)^2-\left(x+2\right)\left(x-2\right)=6\)

\(x^2-8x+16-\left(x^2-4\right)=6\)

\(x^2-8x+16-x^2+4=6\)

\(-8x+20=6\)

\(x=\frac{7}{4}\)

Vậy \(x=\frac{7}{4}\)

\(d,9\left(x+1\right)^2-\left(3x-2\right)\left(3x+2\right)=10\)

\(9\left(x^2+2x+1\right)-\left(9x^2-4\right)=10\)

\(9x^2+18x+9-9x^2+4=10\)

\(18x+13=10\)

\(x=\frac{-1}{6}\)

Vậy \(x=\frac{-1}{6}\)