K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2019

Câu 1 : ( mình đặt cho dễ viết nha )

Vì \(\Delta\)ABC vuông tại A ( gt )

=> \(\widehat{ABC}+\widehat{ACB}=90^o\)( vì trong tam giác vuông hai góc nhọn phụ nhau )

=> \(\hept{\begin{cases}\widehat{ABC}=90^o-\widehat{ACB}\\\widehat{ACB}=90^o-\widehat{ABC}\end{cases}}\)mà ABC , ACB > 0

=> 90o > ACB , 90o > ABC

hay BAC > ACB , BAC > ABC

Xét tam giác abc có BAC > ACB , BAC > ABC ( CMt )

=> BC là cạnh lớn nhất trong tam giác ( quan hệ giữa góc và cạnh đối diện trong tam giác ) ( dpcm )

26 tháng 4 2019

Cạnh đối diện với góc vuông gọi là cạnh huyền. Hai cạnh kề với góc vuông là cạnh bên (hay còn gọi là cạnh góc vuông). Cạnh a có thể xem là kề với góc B và đối góc A, trong khi cạnh b kề góc A và đối góc B.

Nếu chiều dài của ba cạnh là các số nguyên, tam giác được gọi là tam giác Pythagore và chiều dài ba cạnh của nó được gọi chung là Bộ ba số Pythagore.

Ví dụ nè tam giác ABC vuông tại A nha

=) góc A = 90 độ

Vì tam giác ABC vuông tại A 

=) góc B + góc C = 90 độ

=) góc A > góc B và góc A > góc C

=) góc A là góc lớn nhất 

=) BC là cạnh lớn nhất ( ...... )

17 tháng 4 2019

Äá» há»c tá»t Toán 7 | Giải toán lá»p 7

​Xét tam giác ABC có AI là đường trung trực vừa là đường phân giác

vì AI là đường trung trực nên AI vuông góc với BC và I là trung điểm cuả BC

xét 2 tam giác vuông ABI và tam giác vuông ACI có;

IA chung

góc BAI=gócCAI (do AI là phân giác)

do đó tam giác BAI =tam giác CAI

suy ra AB=AC (2 cạnh tương ứng)

suy ra tam giác ABC cân tại A (định nghĩa tam giác cân)

19 tháng 4 2017

Hướng dẫn:

Xét tam giác ABC với AH là đường trung tuyến đồng thời là đường trung trực nên

AH ⊥ BC và HB = HC

Xét hai tam giác vuông HAB và HAC có:

HB = HC

ˆH1=ˆH2H1^=H2^ = 900

AH: cạnh chung

Nên ∆HAB = ∆HAC => AB = AC

Vậy ∆ABC cân tại A

19 tháng 4 2017

Xét tam giác ABC với AH là đường trung tuyến đồng thời là đường trung trực nên

AH ⊥ BC và HB = HC

Xét hai tam giác vuông HAB và HAC có:

HB = HC

ˆH1=ˆH2H1^=H2^ = 900

AH: cạnh chung

Nên ∆HAB = ∆HAC => AB = AC

Vậy ∆ABC cân tại A

5 tháng 4 2019

A B C E D

-Tam giác ABC cân tại A  có BE và CD là 2 đtt

=> AB=AC => AE=AD

Xét tgABE , tgACD có góc A chung , AE=AD,AB=AC

=> ABE=ACD (c g c)

=>BE=CD

-Tam giác ABC có BE và CD là 2 đtt bằng nhau và cắt tại G

=> EG=DG , BG=CG

\(\Delta DGB\),\(\Delta EGC\) có gocDGB = gocEGC ( 2 góc đối đình) EG=DG, BG=CG

=>\(\Delta DGB\)=\(\Delta EGC\)(c.g.c)

=>BD=EC

Xét \(\Delta EBC\)\(\Delta DCB\)  có: BE=CD , BC chung, BD=EC

=>\(\Delta EBC\)=\(\Delta DCB\) (c.c.c)

=>\(\widehat{EBC}=\widehat{DCB}\)

=> TgABC cân tại A (đpcm)

19 tháng 4 2017

cho em giải khác nhé

A B C D H G

D thuộc phân giác góc A suy ra DH = DG ( tính chất tia phân giác của một góc )

xét hai tam giác vuông BHD và CGD có

DH = DG ( cmt)

DB = DC ( gt)

do đó tam giác BHD = tam giác CGD ( cạnh huyền - góc nhọn )

suy ra góc B = góc C ( 2 góc tương ứng )

tam giác ABC có góc B = góc C suy ra tam giác ABC cân tại A

19 tháng 4 2017

Giả sử ∆ABC có AD là phân giác ˆBACBAC^ và DB = DC, ta chứng minh ∆ABC cân tại A

Kéo dài AD một đoạn DA1 = AD

Ta có: ∆ADC = ∆A1DC (c.g.c)

Nên ˆBAD=ˆCA1DBAD^=CA1D^

ˆBAD=ˆCADBAD^=CAD^ (gt)

=> ˆCAD=ˆCA1DCAD^=CA1D^

=> ∆ACA1 cân tại C

Ta lại có: AB = A1C ( ∆ADB = ∆A1DC)

AC = A1C ( ∆ACA1 cân tại C)

=> AB = AC

Vậy ∆ABC cân tại A

Tức là: Nếu tam giác có một đường trung tuyến đồng thời là đường phân giác thì tam giác đó là tam giác cân

13 tháng 5 2016

Dựa vào sách giáo khoa ý

13 tháng 5 2016

A B C D Cả 4 câu đều là 1 hình như thế này, chỉ có kí hiệu khác nhau, bạn tự dựa vào nội dung câu hỏi mà kí hiệu lên hình nhé.

Câu 1:

Xét tam giác ABD và tam giác ACD:

ADB= ADC =90o

AD chung

DB= DC

=> tam giác ABD = tam giác ACD (2 cạnh góc vuông)

=> góc B = góc C (2 góc tương ứng)

Vậy tam giác ABC cân

Câu 2:

Chứng minh y chang câu 1

Câu 3:

Xét tam giác ABD và tam giác ACD:

ADB= ADC =90o

AD chung

BAD = CAD

=> tam giác ABD = tam giác ACD (cạnh góc vuông_ góc nhọn)

=> góc B = góc C (2 góc tương ứng)

Vậy tam giác ABC cân

Câu 4:

Chứng minh giống hệt câu 3.

13 tháng 5 2016

Xét tam giác ABC với AH là đường trung tuyến đồng thời là đường trung trực nên

AH ⊥ BC và HB = HC

Xét hai tam giác vuông HAB và HAC có:

HB = HC

 = 900

AH: cạnh chung

Nên ∆HAB = ∆HAC => AB = AC

Vậy ∆ABC cân tại A

4 tháng 5 2019

xét tam giác AMB và tam giác AMC, có:

AB=AC

MB=MC(gt)

AM chung

=>tam giác AMB= tam giác AMC (c.c.c)

M1=M2 mà góc M1+góc M2=180 độ

=>góc M1= góc M2= góc MC=90 độ

=>AM vuông góc với BC

mà MA=MB

=>AM là đường trung trực của tam giác ABC

Yên tâm đi chắc chắn đúng

12 tháng 4 2016

Trả lời: sgk/73 tập 2

25 tháng 4 2017

CÂU TRẢ LỜI NÀY BUỒN CƯỜI QUÁ ĐI

29 tháng 3 2016

bài 66 trang 49 sách bài tập toán lớp 7