\(a^2+b^2+c^2=3\). Tìm giá tr...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2017

Ta có:\(\sum\dfrac{a^2+6a+3}{a^2+a}=\sum\left(1+\dfrac{5a+3}{a^2+a}\right)=3+\sum\dfrac{5a+3}{a^2+a}\)

Có BĐT phụ: \(\dfrac{5a+3}{a^2+a}\ge-\dfrac{7}{2}a+\dfrac{15}{2}\)đúng vì nó tương đương \(\left(7a+6\right)\left(a-1\right)^2\ge0\left(true\right)\)

Áp dụng tương tự ta có:

\(VT\ge3-\dfrac{7}{2}\left(a+b+c\right)+\dfrac{15}{2}.3\ge3-\dfrac{21}{2}+\dfrac{45}{2}=15\)

Dấu = xảy ra khi a=b=c=1

làm sao để có BĐT phụ để chứng minh hả bn @@

bài 1: Rút gọn: a) A= \(sin^2x+sin^2x.cot^2x\) b) B= \(\left(1-tan^2x\right).cot^2x+1-cot^2x\) c) C= \(sin^2x.tanx+cos^2x.cotx+2sinx.cosx\) d) D= \(\dfrac{1-cosx}{sin^2x}-\dfrac{1}{1+cosx}\) e) E= \(cos^2\alpha.\left(sin^2\alpha+1\right)+sin^4\alpha\) f) F= \(\dfrac{\sqrt{2}cos\alpha-2cos\left(\dfrac{\pi}{4}+2\right)}{-\sqrt{2}sin\alpha+2sin\left(\dfrac{\pi}{4}+2\right)}\) g) G= \(\left(tana-tanb\right)cot\left(a-b\right)-tana.tanb\) bài 2: cho các số dương a,b,c có a+b+c=3....
Đọc tiếp

bài 1: Rút gọn:

a) A= \(sin^2x+sin^2x.cot^2x\)

b) B= \(\left(1-tan^2x\right).cot^2x+1-cot^2x\)

c) C= \(sin^2x.tanx+cos^2x.cotx+2sinx.cosx\)

d) D= \(\dfrac{1-cosx}{sin^2x}-\dfrac{1}{1+cosx}\)

e) E= \(cos^2\alpha.\left(sin^2\alpha+1\right)+sin^4\alpha\)

f) F= \(\dfrac{\sqrt{2}cos\alpha-2cos\left(\dfrac{\pi}{4}+2\right)}{-\sqrt{2}sin\alpha+2sin\left(\dfrac{\pi}{4}+2\right)}\)

g) G= \(\left(tana-tanb\right)cot\left(a-b\right)-tana.tanb\)

bài 2: cho các số dương a,b,c có a+b+c=3. Tìm giá trị nhỏ nhất của biểu thức

P= \(\dfrac{a\sqrt{a}}{\sqrt{2c+a+b}}+\dfrac{b\sqrt{b}}{\sqrt{2a+b+c}}+\dfrac{c\sqrt{c}}{\sqrt{2b+c+a}}\)

bài 3: cho a,b,c dương sao cho \(a^2+b^2+c^2=3\). Chứng minh rằng: \(\dfrac{a^3b^3}{c}+\dfrac{a^3c^3}{b}+\dfrac{b^3c^3}{a}\ge3abc\)

bài 4: cho các số thực dương a,b,c thỏa mãn a+b+c=3. Tìm giá trị nhỏ nhất cảu biểu thức :

P= \(\dfrac{1}{a}+\dfrac{1}{b}-c\)

bài 5: Cho a,b>0, \(3b+b\le1.\) Tìm giá trị nhỏ nhất của P= \(\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\)

5
AH
Akai Haruma
Giáo viên
27 tháng 2 2019

Bài 1:

a)

\(\sin ^2x+\sin ^2x\cot^2x=\sin ^2x(1+\cot^2x)=\sin ^2x(1+\frac{\cos ^2x}{\sin ^2x})\)

\(=\sin ^2x.\frac{\sin ^2x+\cos^2x}{\sin ^2x}=\sin ^2x+\cos^2x=1\)

b)

\((1-\tan ^2x)\cot^2x+1-\cot^2x\)

\(=\cot^2x(1-\tan^2x-1)+1=\cot^2x(-\tan ^2x)+1=-(\tan x\cot x)^2+1\)

\(=-1^2+1=0\)

c)

\(\sin ^2x\tan x+\cos^2x\cot x+2\sin x\cos x=\sin ^2x.\frac{\sin x}{\cos x}+\cos ^2x.\frac{\cos x}{\sin x}+2\sin x\cos x\)

\(=\frac{\sin ^3x}{\cos x}+\frac{\cos ^3x}{\sin x}+2\sin x\cos x=\frac{\sin ^4x+\cos ^4x+2\sin ^2x\cos ^2x}{\sin x\cos x}=\frac{(\sin ^2x+\cos ^2x)^2}{\sin x\cos x}=\frac{1}{\sin x\cos x}\)

\(=\frac{1}{\frac{\sin 2x}{2}}=\frac{2}{\sin 2x}\)

AH
Akai Haruma
Giáo viên
27 tháng 2 2019

Bài 2:

Áp dụng BĐT Cauchy Schwarz ta có:

\(P=\frac{a^2}{\sqrt{a(2c+a+b)}}+\frac{b^2}{\sqrt{b(2a+b+c)}}+\frac{c^2}{\sqrt{c(2b+c+a)}}\)

\(\geq \frac{(a+b+c)^2}{\sqrt{a(2c+a+b)}+\sqrt{b(2a+b+c)}+\sqrt{c(2b+c+a)}}(*)\)

Tiếp tục áp dụng BĐT Cauchy-Schwarz:

\((\sqrt{a(2c+a+b)}+\sqrt{b(2a+b+c)}+\sqrt{c(2b+c+a)})^2\leq (a+b+c)(2c+a+b+2a+b+c+2b+c+a)\)

\(\Leftrightarrow (\sqrt{a(2c+a+b)}+\sqrt{b(2a+b+c)}+\sqrt{c(2b+c+a)})^2\leq 4(a+b+c)^2\)

\(\Rightarrow \sqrt{a(2c+a+b)}+\sqrt{b(2a+b+c)}+\sqrt{c(2b+c+a)}\leq 2(a+b+c)(**)\)

Từ \((*); (**)\Rightarrow P\geq \frac{(a+b+c)^2}{2(a+b+c)}=\frac{a+b+c}{2}=\frac{3}{2}\)

Vậy \(P_{\min}=\frac{3}{2}\)

Dấu "=" xảy ra khi $a=b=c=1$

AH
Akai Haruma
Giáo viên
17 tháng 5 2018

Bài 1:

Ta có:

\(\text{VT}=\frac{a^2}{a+2b^2}+\frac{b^2}{b+2c^2}+\frac{c^2}{c+2a^2}\)

\(=a-\frac{2ab^2}{a+2b^2}+b-\frac{2bc^2}{b+2c^2}+c-\frac{2ca^2}{c+2a^2}=(a+b+c)-2\left(\frac{ab^2}{a+2b^2}+\frac{bc^2}{b+2c^2}+\frac{ca^2}{c+2a^2}\right)\)

\(=3-2M(*)\)

Áp dụng BĐT Cauchy ta có:

\(M=\frac{ab^2}{a+b^2+b^2}+\frac{bc^2}{b+c^2+c^2}+\frac{ca^2}{c+a^2+a^2}\leq \frac{ab^2}{3\sqrt[3]{ab^4}}+\frac{bc^2}{3\sqrt[3]{bc^4}}+\frac{ca^2}{3\sqrt[3]{ca^4}}\)

\(\Leftrightarrow M\leq \frac{1}{3}(\sqrt[3]{a^2b^2}+\sqrt[3]{b^2c^2}+\sqrt[3]{c^2a^2})\)

Tiếp tục áp dụng BĐT Cauchy:

\(\sqrt[3]{a^2b^2}+\sqrt[3]{b^2c^2}+\sqrt[3]{c^2a^2}\leq \frac{ab+ab+1}{3}+\frac{bc+bc+1}{3}+\frac{ca+ca+1}{3}=\frac{2(ab+bc+ac)+3}{3}\)

\(ab+bc+ac\leq \frac{(a+b+c)^2}{3}=3\) (quen thuộc)

\(\Rightarrow M\leq \frac{1}{3}.\frac{2.3+3}{3}=1(**)\)

Từ \((*);(**)\Rightarrow \text{VT}\geq 3-2.1=1\)

(đpcm)

Dấu bằng xảy ra khi $a=b=c=1$

AH
Akai Haruma
Giáo viên
17 tháng 5 2018

Bài 2:

Áp dụng BĐT Cauchy -Schwarz:

\(\text{VT}=\frac{a^3}{a^2+a^2b^2}+\frac{b^3}{b^2+b^2c^2}+\frac{c^3}{c^2+a^2c^2}\geq \frac{(a\sqrt{a}+b\sqrt{b}+c\sqrt{c})^2}{a^2+a^2b^2+b^2+b^2c^2+c^2+c^2a^2}\)

hay:

\(\text{VT}\geq \frac{(a\sqrt{a}+b\sqrt{b}+c\sqrt{c})^2}{1+a^2b^2+b^2c^2+c^2a^2}(*)\)

Mặt khác, theo BĐT Cauchy ta dễ thấy:

\(a^4+b^4+c^4\geq a^2b^2+b^2c^2+c^2a^2\)

\(\Rightarrow (a^2+b^2+c^2)^2\geq 3(a^2b^2+b^2c^2+c^2a^2)\)

\(\Leftrightarrow 1\geq 3(a^2b^2+b^2c^2+c^2a^2)\Rightarrow a^2b^2+b^2c^2+c^2a^2\leq \frac{1}{3}(**)\)

Từ \((*);(**)\Rightarrow \text{VT}\geq \frac{(a\sqrt{a}+b\sqrt{b}+c\sqrt{c})^2}{1+\frac{1}{3}}=\frac{3}{4}(a\sqrt{a}+b\sqrt{b}+c\sqrt{c})^2\)

Ta có đpcm

Dấu bằng xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)

13 tháng 6 2017

Từ \(a^2b^2+b^2c^2+c^2a^2\ge a^2b^2c^2\)\(\Rightarrow\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}=1\)

bài này tui làm rồi ở đây

26 tháng 5 2017

Áp dụng bất đẳng thức Bunyakovsky

\(\Rightarrow\sqrt{\left(\dfrac{8}{a^2}+\dfrac{9b^2}{2}+\dfrac{c^2a^2}{4}\right)\left[\left(\sqrt{2}\right)^2+\left(3\sqrt{2}\right)^2+2^2\right]}\ge\left(\sqrt{\dfrac{4}{a}+9b+ca}\right)^2\)

\(\Leftrightarrow2\sqrt{6}\sqrt{\dfrac{8}{a^2}+\dfrac{9b^2}{2}+\dfrac{c^2a^2}{4}}\ge\dfrac{4}{a}+9b+ac\)

Tương tự ta có \(\left\{{}\begin{matrix}2\sqrt{6}\sqrt{\left(\dfrac{8}{b^2}+\dfrac{9c^2}{2}+\dfrac{a^2b^2}{4}\right)}\ge\dfrac{4}{b}+9c+ab\\2\sqrt{6}\sqrt{\left(\dfrac{8}{c^2}+\dfrac{9a^2}{2}+\dfrac{b^2c^2}{4}\right)}\ge\dfrac{4}{c}+9a+bc\end{matrix}\right.\)

\(\Rightarrow2\sqrt{6}S\ge\dfrac{4}{a}+9a+\dfrac{4}{b}+9b+\dfrac{4}{c}+9c+ab+bc+ac\)

\(\Leftrightarrow2\sqrt{6}S\ge\dfrac{4}{a}+a+8a+\dfrac{4}{b}+b+8b+\dfrac{4}{c}+c+8c+ab+bc+ca\)

Áp dụng bất đẳng thức Cauchy

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{4}{a}+a\ge2\sqrt{4}=4\\\dfrac{4}{b}+b\ge2\sqrt{4}=4\\\dfrac{4}{c}+c\ge2\sqrt{4}=4\end{matrix}\right.\)

\(\Rightarrow\dfrac{4}{a}+a+8a+\dfrac{4}{b}+b+8b+\dfrac{4}{c}+c+8c+ab+bc+ca\ge12+8a+8b+8c+ab+bc+ac\)

\(\Rightarrow2\sqrt{6}S\ge12+8a+8b+8c+ab+bc+ac\)

\(\Leftrightarrow2\sqrt{6}S\ge12+2a+bc+2b+ac+2c+ab+6\left(a+b+c\right)\)

Áp dụng bất đẳng thức Cauchy

\(\Rightarrow2a+bc\ge2\sqrt{2abc}\)

Tượng tự ta có \(2b+ac\ge2\sqrt{2abc}\) ; \(2c+ab\ge2\sqrt{2abc}\)

\(\Rightarrow12+2a+bc+2b+ac+2c+ab+6\left(a+b+c\right)\ge6\left(a+b+c+\sqrt{2abc}\right)+12\)

\(\Rightarrow2\sqrt{6}S\ge6\left(a+b+c+\sqrt{2abc}\right)+12\)

Theo đề bài ta có \(a+b+c+\sqrt{2abc}\ge10\)

\(\Rightarrow6\left(a+b+c+\sqrt{2abc}\right)+12\ge72\)

\(\Rightarrow S\ge\dfrac{72}{2\sqrt{6}}=6\sqrt{6}\) ( đpcm )

Dấu " = " xảy ra khi \(a=b=c=2\)

11 tháng 2 2019

bạn đã trúng tà thuật đạo từ con mắt này .Nói cách khác bạn đã trúng ảo thuật ,chỉ có mình và itachi mới giải thuật được cho bạn nha!!undefined

ê bn có bthường k zậy

AH
Akai Haruma
Giáo viên
24 tháng 5 2018

a) Sai với \(a=1,b=2\)

b)

Thực hiện biến đổi tương đương:

\(\frac{a}{3b}+\frac{b(a+b)}{a^2+ab+b^2}\geq 1\)

\(\Leftrightarrow \frac{a}{3b}+\frac{b(a+b)+a^2}{a^2+ab+b^2}-\frac{a^2}{a^2+ab+b^2}\geq 1\)

\(\Leftrightarrow \frac{a}{3b}-\frac{a^2}{a^2+ab+b^2}\geq 0\)

\(\Leftrightarrow \frac{1}{3b}-\frac{a}{a^2+ab+b^2}\geq 0\)

\(\Leftrightarrow \frac{a^2+ab+b^2-3ab}{3b(a^2+ab+b^2)}\geq 0\)

\(\Leftrightarrow \frac{(a-b)^2}{3b(a^2+ab+b^2)}\geq 0\) (luôn đúng)

Do đó ta có đpcm. Dấu bằng xảy ra khi $a=b$

c) BĐT sai với \(a=1,b=2\)

24 tháng 5 2018

Cảm ơn thầy Akai Haruma